一种基于Siamese条件生成对抗网络的fMRI动态视觉重建方法

IF 1 4区 生物学 Q3 BIOLOGY Brazilian Archives of Biology and Technology Pub Date : 2023-07-03 DOI:10.1590/1678-4324-2023220330
Rathi Karuppasamy, Gomathi Velusamy, Raja Soosaimarian Peter Raj
{"title":"一种基于Siamese条件生成对抗网络的fMRI动态视觉重建方法","authors":"Rathi Karuppasamy, Gomathi Velusamy, Raja Soosaimarian Peter Raj","doi":"10.1590/1678-4324-2023220330","DOIUrl":null,"url":null,"abstract":": This paper aims to improve the quality of reconstructed visual stimuli and reduce the computational complexity of the visual stimuli reconstruction processes in the form of functional Magnetic Resonance Imaging (fMRI) profiles. The preceding work envisions the non-cognitive contents of brain activity vain to integrate visual data of diverse hierarchical levels. Existing approaches such as Deep Canonically Correlated Auto Encoder detect the significant challenges of reconstructing visual stimuli from brain activity: fMRI noise, large dimensionality of a limited number of data instances, and complex structure of visual stimuli. In this activity, we will also analyze the scope for utilizing the spatiotemporal data to resolve the neural correlates of visual stimulus representations and reconstruct the resembling visual stimuli. The purpose of this work is to manipulate those suffering from developmental disabilities.","PeriodicalId":9169,"journal":{"name":"Brazilian Archives of Biology and Technology","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Approach of Dynamic Vision Reconstruction from fMRI Profiles Using Siamese Conditional Generative Adversarial Network\",\"authors\":\"Rathi Karuppasamy, Gomathi Velusamy, Raja Soosaimarian Peter Raj\",\"doi\":\"10.1590/1678-4324-2023220330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": This paper aims to improve the quality of reconstructed visual stimuli and reduce the computational complexity of the visual stimuli reconstruction processes in the form of functional Magnetic Resonance Imaging (fMRI) profiles. The preceding work envisions the non-cognitive contents of brain activity vain to integrate visual data of diverse hierarchical levels. Existing approaches such as Deep Canonically Correlated Auto Encoder detect the significant challenges of reconstructing visual stimuli from brain activity: fMRI noise, large dimensionality of a limited number of data instances, and complex structure of visual stimuli. In this activity, we will also analyze the scope for utilizing the spatiotemporal data to resolve the neural correlates of visual stimulus representations and reconstruct the resembling visual stimuli. The purpose of this work is to manipulate those suffering from developmental disabilities.\",\"PeriodicalId\":9169,\"journal\":{\"name\":\"Brazilian Archives of Biology and Technology\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brazilian Archives of Biology and Technology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1590/1678-4324-2023220330\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Archives of Biology and Technology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1590/1678-4324-2023220330","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在提高视觉刺激重建的质量,降低视觉刺激重建过程的计算复杂度,以功能磁共振成像(fMRI)的形式进行。前面的工作设想了大脑活动的非认知内容,以整合不同层次的视觉数据。现有的方法,如深度经典相关自动编码器检测到从大脑活动重建视觉刺激的重大挑战:fMRI噪声,有限数量的数据实例的大维度,以及视觉刺激的复杂结构。在本次活动中,我们还将分析利用时空数据来解析视觉刺激表征的神经关联以及重建相似视觉刺激的范围。这项工作的目的是操纵那些患有发育障碍的人。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Novel Approach of Dynamic Vision Reconstruction from fMRI Profiles Using Siamese Conditional Generative Adversarial Network
: This paper aims to improve the quality of reconstructed visual stimuli and reduce the computational complexity of the visual stimuli reconstruction processes in the form of functional Magnetic Resonance Imaging (fMRI) profiles. The preceding work envisions the non-cognitive contents of brain activity vain to integrate visual data of diverse hierarchical levels. Existing approaches such as Deep Canonically Correlated Auto Encoder detect the significant challenges of reconstructing visual stimuli from brain activity: fMRI noise, large dimensionality of a limited number of data instances, and complex structure of visual stimuli. In this activity, we will also analyze the scope for utilizing the spatiotemporal data to resolve the neural correlates of visual stimulus representations and reconstruct the resembling visual stimuli. The purpose of this work is to manipulate those suffering from developmental disabilities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
116
审稿时长
3 months
期刊介绍: Information not localized
期刊最新文献
Societal Factors and Teen Dating Violence: a Scoping Review. Multi-objective Sand Piper Optimization Based Clustering with Multihop Routing Technique for IoT Assisted WSN Estimation of Genetic Variance Components for Corn Ear Rot in RIL Populations Derived from Three Biparental Crosses Oral Yeast Load and Species of Young Individuals Aged 18-25 Diallel Analysis of Dry Bean Varieties for Seed Yield and Important Traits for Calcareous Soils
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1