基于YOLOv4和微型YOLOv4的饲料作物检测与人工智能板

IF 1 4区 生物学 Q3 BIOLOGY Brazilian Archives of Biology and Technology Pub Date : 2023-05-22 DOI:10.1590/1678-4324-2023220803
A. Beyaz, Veysel Gül
{"title":"基于YOLOv4和微型YOLOv4的饲料作物检测与人工智能板","authors":"A. Beyaz, Veysel Gül","doi":"10.1590/1678-4324-2023220803","DOIUrl":null,"url":null,"abstract":": The decrease in the possibilities of increasing the arable agricultural areas in the world and the continuous increase in the population have led those who are engaged in plant production to seek ways to make maximum use of the existing agricultural areas. One of these ways is mixed sowing systems. It is very difficult to sow species with different grain sizes in mixtures. Special sowing machines are needed for this aim. Because of this reason, the article aims to be a guide for artificial intelligence capable of mixed sowing in forage crops. In the research, it is found that there are some differences between YOLOv4-tiny and Y0L0v4 models as Precision, Recall, F1-score, TP, FP, FN scores. For the YOLOv4-tiny model, these scores were found as 0.99, 1.00, 0.99, 90, 1, 0, respectively and the scores for the Y0L0v4 model were 1.00, 1.00, 1.00, 90, 0, 0. According to the YOLOv4-tiny and YOLOv4 tests in the lab, suggesting that the YOLOv4-tiny is faster, and the YOLOv4 is more reliable in terms of all these factors combined. This research establishes a standard for real-time recognition of forage crops based on current technology at NVIDIA Jetson TX2 due to its high performance and low power consumption and a high-performance computer with CUDA support.","PeriodicalId":9169,"journal":{"name":"Brazilian Archives of Biology and Technology","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"YOLOv4 and Tiny YOLOv4 Based Forage Crop Detection with an Artificial Intelligence Board\",\"authors\":\"A. Beyaz, Veysel Gül\",\"doi\":\"10.1590/1678-4324-2023220803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": The decrease in the possibilities of increasing the arable agricultural areas in the world and the continuous increase in the population have led those who are engaged in plant production to seek ways to make maximum use of the existing agricultural areas. One of these ways is mixed sowing systems. It is very difficult to sow species with different grain sizes in mixtures. Special sowing machines are needed for this aim. Because of this reason, the article aims to be a guide for artificial intelligence capable of mixed sowing in forage crops. In the research, it is found that there are some differences between YOLOv4-tiny and Y0L0v4 models as Precision, Recall, F1-score, TP, FP, FN scores. For the YOLOv4-tiny model, these scores were found as 0.99, 1.00, 0.99, 90, 1, 0, respectively and the scores for the Y0L0v4 model were 1.00, 1.00, 1.00, 90, 0, 0. According to the YOLOv4-tiny and YOLOv4 tests in the lab, suggesting that the YOLOv4-tiny is faster, and the YOLOv4 is more reliable in terms of all these factors combined. This research establishes a standard for real-time recognition of forage crops based on current technology at NVIDIA Jetson TX2 due to its high performance and low power consumption and a high-performance computer with CUDA support.\",\"PeriodicalId\":9169,\"journal\":{\"name\":\"Brazilian Archives of Biology and Technology\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brazilian Archives of Biology and Technology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1590/1678-4324-2023220803\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Archives of Biology and Technology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1590/1678-4324-2023220803","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
YOLOv4 and Tiny YOLOv4 Based Forage Crop Detection with an Artificial Intelligence Board
: The decrease in the possibilities of increasing the arable agricultural areas in the world and the continuous increase in the population have led those who are engaged in plant production to seek ways to make maximum use of the existing agricultural areas. One of these ways is mixed sowing systems. It is very difficult to sow species with different grain sizes in mixtures. Special sowing machines are needed for this aim. Because of this reason, the article aims to be a guide for artificial intelligence capable of mixed sowing in forage crops. In the research, it is found that there are some differences between YOLOv4-tiny and Y0L0v4 models as Precision, Recall, F1-score, TP, FP, FN scores. For the YOLOv4-tiny model, these scores were found as 0.99, 1.00, 0.99, 90, 1, 0, respectively and the scores for the Y0L0v4 model were 1.00, 1.00, 1.00, 90, 0, 0. According to the YOLOv4-tiny and YOLOv4 tests in the lab, suggesting that the YOLOv4-tiny is faster, and the YOLOv4 is more reliable in terms of all these factors combined. This research establishes a standard for real-time recognition of forage crops based on current technology at NVIDIA Jetson TX2 due to its high performance and low power consumption and a high-performance computer with CUDA support.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
116
审稿时长
3 months
期刊介绍: Information not localized
期刊最新文献
Societal Factors and Teen Dating Violence: a Scoping Review. Multi-objective Sand Piper Optimization Based Clustering with Multihop Routing Technique for IoT Assisted WSN Estimation of Genetic Variance Components for Corn Ear Rot in RIL Populations Derived from Three Biparental Crosses Oral Yeast Load and Species of Young Individuals Aged 18-25 Diallel Analysis of Dry Bean Varieties for Seed Yield and Important Traits for Calcareous Soils
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1