农杆菌介导的紫穗槐子叶结愈伤组织遗传转化体系研究

Q2 Agricultural and Biological Sciences International Journal of Agriculture and Biology Pub Date : 2022-03-01 DOI:10.17957/ijab/15.1917
Yiteng Zhang
{"title":"农杆菌介导的紫穗槐子叶结愈伤组织遗传转化体系研究","authors":"Yiteng Zhang","doi":"10.17957/ijab/15.1917","DOIUrl":null,"url":null,"abstract":"We used Agrobacterium-mediated infection of callus induced from the cotyledonary nodes of Amorpha fruticosa L. to study the β-glucuronidase gene (GUS)-integrated genetic transformation system. Transformed calluses were selected under 40 mg·L−1 kanamycin, differentiated into resistant adventitious buds, and developed into transformants. A single copy of gus was integrated in the genome of most T0 generation plants. Gus chemical staining analysis showed blue color in resistant calluses, adventitious buds, and the roots and leaves of transformed plants. This indicated gus overexpression driven by the 35S promotor and resultant β-glucuronidase activity. The genetic transformation system in this study could be used to study other functional genes of A. fruticosa and facilitate transgenic breeding for strain improvement. © 2022 Friends Science Publishers","PeriodicalId":13769,"journal":{"name":"International Journal of Agriculture and Biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Agrobacterium-Mediated Genetic Transformation System of Amorpha fruticosa using Callus from the Cotyledonary Node\",\"authors\":\"Yiteng Zhang\",\"doi\":\"10.17957/ijab/15.1917\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We used Agrobacterium-mediated infection of callus induced from the cotyledonary nodes of Amorpha fruticosa L. to study the β-glucuronidase gene (GUS)-integrated genetic transformation system. Transformed calluses were selected under 40 mg·L−1 kanamycin, differentiated into resistant adventitious buds, and developed into transformants. A single copy of gus was integrated in the genome of most T0 generation plants. Gus chemical staining analysis showed blue color in resistant calluses, adventitious buds, and the roots and leaves of transformed plants. This indicated gus overexpression driven by the 35S promotor and resultant β-glucuronidase activity. The genetic transformation system in this study could be used to study other functional genes of A. fruticosa and facilitate transgenic breeding for strain improvement. © 2022 Friends Science Publishers\",\"PeriodicalId\":13769,\"journal\":{\"name\":\"International Journal of Agriculture and Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Agriculture and Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17957/ijab/15.1917\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Agriculture and Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17957/ijab/15.1917","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

摘要

利用农杆菌介导的紫穗槐子叶节愈伤组织侵染,研究了β-葡萄糖醛酸酶基因(GUS)整合的遗传转化体系。在40 mg·L−1卡那霉素作用下,转化愈伤组织分化为抗性不定芽,并发育为转化体。大多数第0代植物的基因组中都有gus的一个拷贝。Gus化学染色分析表明,转化植株的抗性愈伤组织、不定芽、根和叶呈蓝色。这表明gus过表达是由35S启动子驱动的,并由此产生β-葡萄糖醛酸酶活性。本研究建立的遗传转化体系可用于研究金银花的其他功能基因,为品种改良的转基因育种提供依据。©2022朋友科学出版社
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Agrobacterium-Mediated Genetic Transformation System of Amorpha fruticosa using Callus from the Cotyledonary Node
We used Agrobacterium-mediated infection of callus induced from the cotyledonary nodes of Amorpha fruticosa L. to study the β-glucuronidase gene (GUS)-integrated genetic transformation system. Transformed calluses were selected under 40 mg·L−1 kanamycin, differentiated into resistant adventitious buds, and developed into transformants. A single copy of gus was integrated in the genome of most T0 generation plants. Gus chemical staining analysis showed blue color in resistant calluses, adventitious buds, and the roots and leaves of transformed plants. This indicated gus overexpression driven by the 35S promotor and resultant β-glucuronidase activity. The genetic transformation system in this study could be used to study other functional genes of A. fruticosa and facilitate transgenic breeding for strain improvement. © 2022 Friends Science Publishers
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Agriculture and Biology
International Journal of Agriculture and Biology AGRICULTURE, MULTIDISCIPLINARY-
CiteScore
1.70
自引率
0.00%
发文量
40
审稿时长
5 months
期刊介绍: Information not localized
期刊最新文献
The Possible Protective Effect of Luteolin in a Thioacetamide Rat Model of Testicular Toxicity Improvement of Micropropagation through Combination of Plant Growth Regulators in Indonesian Sorghum Hybrid Cultivar ‘MARKAZ-2019’: A Spring Wheat Variety for Rainfed Areas of Pakistan Field and In Vitro Evaluation of Mandarin Cultivars Resistance to Alternaria alternata Effects of Threonine Supplementation in Low Protein Diet on Broilers Growth Performance and Biochemical Parameters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1