生产用于癌症治疗和诊断的医用放射性同位素的应用和重要性

O. Artun
{"title":"生产用于癌症治疗和诊断的医用放射性同位素的应用和重要性","authors":"O. Artun","doi":"10.15761/MRI.1000155","DOIUrl":null,"url":null,"abstract":"This work points out importance of medical radioisotopes in nuclear medicine based on treatment and diagnosis of cancer. Moreover, possible production methods of medical radioisotopes are evaluated, and an application for the production of two medical radioisotopes through neutron and deuteron induced reaction processes is discussed by comparing with experimental data in the literature. *Correspondence to: Ozan Artun, Department of Physics, Zonguldak Bülent Ecevit University, Turkey, E-mail: ozanartun@beun.edu.tr / ozanartun@yahoo.com Received: March 12, 2019; Accepted: March 25, 2019; Published: March 28, 2019 Introduction Nuclear medicine plays an important role in diagnosis and treatment of cancerous cells using different devices some of which are Single Photon Emission Computed Tomography (SPECT), Positron Emission Tomography (PET), which are used in diagnostic aims [14]. Addition to diagnosis, cancer treatment is also available in nuclear medicine; however, the therapy can be separated two section as internal and external therapy. For instance, Intensity-modulated radiation therapy (IMRT) [5] that is a type of 3-D conformal radiation therapy [6] is an external therapy device. On the other hand, brachytherapy that is fairly important method can be called as internal therapy. In the literature, a lot of devices and methods to use medical radioisotopes in nuclear medicine are available in the literature. Common point of ones is definitely radioisotopes used in diagnosis and treatment of cancer, and these radioisotopes are produced by either nuclear reactors or particle accelerators via neutron reactions like (n,γ) or charged particle induced reaction processes e.g. proton, deuteron and alpha particles. Some of the famous radioisotopes produced in nuclear reactors may give Mo-99, P-32, Cu-64, Y-90 radioisotopes. Furthermore, medical radioisotopes produced by the charged particle induced reactions are commonly used in PET and SPECT. Such a production is carried out particle accelerators with energy ranges 1-50 MeV such as O-15, F-18, Ga-68 etc. But, for production of Ac-225 that is therapeutic purpose particle accelerators with higher energy are necessary [7]. Therefore, the production method of radioisotopes used in nuclear medicine can change kind of nuclei based on their half-lives and type of emission. For an application of the production of medical radioisotopes, we investigated the production of Kr-42 and Mn-51 radioisotopes via deuteron and neutron induced reaction processes. Materials and method The productions of K-42 and Mn-51 radioisotopes used for medical aims were carried out by neutron and deuteron induced reaction in energy region between 1 MeV and 30 MeV incident energy. Therefore, we used 45Sc(n,α)42K and 50Cr(d,n)51Mn reactions where the purities of the target materials are above 99% and each target is uniform [5,7,8]. The cross-section calculations were performed two component exciton models via TALYS 1.9 code [9] and the level density model was chosen Fermi gas model with constant temperature [1]. The calculated results for each reaction were compared with experimental data obtained from Exfor database [10]. Results and discussion The calculated cross-sections of 45Sc(n,α)42K and 50Cr(d,n)51Mn reactions are presented in figures 1 and 2 as dependent on incident energy. In 45Sc(n,α)42K reaction, there are a lot of experimental data measured by Subasi et al. (1998), Molla et al. (1998), Doczi et al. (1998), Bostan and Qaim (1994), Grallert et al. (1993), Belgaid et al. (1992), Ikeda et al. (1988), Levkovskii et al. (1969), Bayhurst and Prestwood (1961) [11-19], and it is clear that the calculated cross-section generally consistent with the experimental data, especially in the maximum cross-section values about 14 MeV neutron incident energy where the experimental cross-section values reach up to 70 MeV. Furthermore, for 50Cr(d,n)51Mn reaction, the experimental data reported by Klein et al. (2000) [20] agree with the calculated cross-section curves from threshold to 5 MeV; however, beyond 5 MeV, the experimental data are higher than the theoretical cross-section curves. On the other hand, both experimental and theoretical values are the same up to 5 MeV (Figure 2). Conclusion In this work, we calculated the production of 51Mn and 42K radioisotopes for neutron and deuteron induced reactions and the obtained results were compared with experimental data in the literature data. The calculated data were in good agreement with experimental data in maximum cross-section values which define the appropriate incident energy. Additionally, to produce 51Mn radioisotope, the deuteron induced reaction do not has enough experimental and theoretical results in the literature. Therefore, we can propose new works for the production of 51Mn as both experimental and theoretical. Artun O (2019) An application and importance of production of medical radioisotopes used in cancer therapy and diagnosis Volume 3: 2-3 Med Res Innov, 2019 doi: 10.15761/MRI.1000155 References 1. Artun O (2019) Calculation of productions of medical 201Pb, 198Au, 186Re, 111Ag, 103Pd, 90Y, 89Sr, 77Kr, 77As, 67Cu, 64Cu, 47Sc and 32P nuclei used in cancer therapy via phenomenological and microscopic level density models. Appl Radiat Isot 144: 64-79. [Crossref] 2. Artun O (2018) Calculation of productions of PET radioisotopes via phenomenological level density models. Radiat Phys Chem 149: 73-83. 3. Artun O (2018) Investigation of the productions of medical 82Sr and 68Ge for 82Sr/82Rb and 68Ge/68Ga generators via proton accelerator. Nucl Sci Tech 29: 137. 4. Artun O (2018) A study of some nuclear structure properties of 11C, 13N, 15O, 18F, 52Mn, 52Fe, 60Cu, 62Zn, 63Zn, 66Ga, 68Ga, 76Br, 81Rb, 82Rb, 82Sr, 83Sr, 86Y, 89Zr and 92Rb nuclei used for PET in the axial deformation. Indian J Phys 92: 1449-1460. 5. Artun O (2017) Investigation of the production of cobalt-60 via particle accelerator. Nucl Tech Radiat Protec 32: 327-333. 6. Cancer treatment (2019). [https://www.cancer.gov/about-cancer/treatment/types/ radiation-therapy/external-beam] 7. Artun O (2017) Estimation of the production of medical Ac-225 on thorium material via proton accelerator. Appl Radiat Isot 127: 166-172. [Crossref] 8. Artun O (2017) Investigation of the production of promethium-147 via particle accelerator. Indian J Phys 91: 909-914. 9. Koning A, Hilaire S, Goriely S (2017) Talys manual 1.9. . 10. Exfor (2019) Experimental Nuclear Reaction Data. . 11. Subasi M, Erduran MN, Bostan M, Reyhancan IA, Gueltekin E, et al. (1998) (n,alpha) reaction cross sections of 44Ca, 45Sc and 51V nuclei from 13.6 to 14.9 MeV. Nucl Sci Eng 130: 254. 12. Molla NI, Basunia S, Miah RU, Hossain SM, Rahman M, et al. (1998) Radiochemical study of the Sc-45(n,p)Ac-45 and Y-89(n,p)Sr-89 reactions in the neutron energy range of 13.9 to 14.7 MeV. Radiochim Acta 80: 189. [Crossref] Figure 1. Calculation of cross-section of 45Sc(n,α)42K reaction. Figure 2. Calculation of cross-section of 50Cr(d,n)51Mn reaction. Artun O (2019) An application and importance of production of medical radioisotopes used in cancer therapy and diagnosis Volume 3: 3-3 Med Res Innov, 2019 doi: 10.15761/MRI.1000155 Copyright: ©2019 Artun O. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 13. Doczi R, Semkova V, Fenyvesi A, Yamamuro N, Buczko CM, et al. (1998) Excitation functions of some (n,p) and (n,alpha) reactions from threshold to 16 MeV. Nucl Sci Eng 129: 164. 14. Bostan M, Qaim SM (1994) Excitation functions of threshold reactions on 45Sc and 55Mn induced by 6 to 13 MeV neutrons. Phys Rev C Nucl Phys 49: 266-271. [Crossref] 15. Grallert A Csikai J, Buczko CM, Shaddad I (1993) Investigations on the systematics in (n,a) cross sections at 14.6 MeV. IAEA Nucl Data Sect. Report 286: 131. 16. Belgaid M, Siad M, Allab M (1992) Measurement of 14.7 MeV Neutron Cross Sections for Several Isotopes. J Radioanalytical Nucl Chem Letters 166: 493. 17. Ikeda Y, Konno C, Oishi K, Nakamura T, Miyade H, et al. (1988) Activation cross section measurements for fusion reactor structural materials at neutron energy from 13.3 to 15.0 MeV using FNS facility. JAERI Reports No 1312. [Crossref] 18. Levkovskii VN, Kovel`skaya GE, Vinitskaya GP, Stepanov VM, Sokol`ski VV (1969) Cross sections of the (n,p) and (n,alpha) reactions at 14.8 MeV . Sov J Nucl Phys 8: 4. 19. Bayhurst BP, Prestwood RJ (1961) (n,p) and (n,alpha) Excitation functions of several nuclei from 7.0 to 19.8 MeV. J Inorg Nucl Chem 23:173. 20. Klein ATJ, Roesch F, Qaim SM (2000) Investigation of Cr-50(d,n)Mn-51 and NatCr(p,x)Mn-51 processes with respect to the production of the positron emitter Mn-51. Radiochimica Acta 88: 253.","PeriodicalId":93126,"journal":{"name":"Medical research and innovations","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An application and importance of production of medical radioisotopes used in cancer therapy and diagnosis\",\"authors\":\"O. Artun\",\"doi\":\"10.15761/MRI.1000155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work points out importance of medical radioisotopes in nuclear medicine based on treatment and diagnosis of cancer. Moreover, possible production methods of medical radioisotopes are evaluated, and an application for the production of two medical radioisotopes through neutron and deuteron induced reaction processes is discussed by comparing with experimental data in the literature. *Correspondence to: Ozan Artun, Department of Physics, Zonguldak Bülent Ecevit University, Turkey, E-mail: ozanartun@beun.edu.tr / ozanartun@yahoo.com Received: March 12, 2019; Accepted: March 25, 2019; Published: March 28, 2019 Introduction Nuclear medicine plays an important role in diagnosis and treatment of cancerous cells using different devices some of which are Single Photon Emission Computed Tomography (SPECT), Positron Emission Tomography (PET), which are used in diagnostic aims [14]. Addition to diagnosis, cancer treatment is also available in nuclear medicine; however, the therapy can be separated two section as internal and external therapy. For instance, Intensity-modulated radiation therapy (IMRT) [5] that is a type of 3-D conformal radiation therapy [6] is an external therapy device. On the other hand, brachytherapy that is fairly important method can be called as internal therapy. In the literature, a lot of devices and methods to use medical radioisotopes in nuclear medicine are available in the literature. Common point of ones is definitely radioisotopes used in diagnosis and treatment of cancer, and these radioisotopes are produced by either nuclear reactors or particle accelerators via neutron reactions like (n,γ) or charged particle induced reaction processes e.g. proton, deuteron and alpha particles. Some of the famous radioisotopes produced in nuclear reactors may give Mo-99, P-32, Cu-64, Y-90 radioisotopes. Furthermore, medical radioisotopes produced by the charged particle induced reactions are commonly used in PET and SPECT. Such a production is carried out particle accelerators with energy ranges 1-50 MeV such as O-15, F-18, Ga-68 etc. But, for production of Ac-225 that is therapeutic purpose particle accelerators with higher energy are necessary [7]. Therefore, the production method of radioisotopes used in nuclear medicine can change kind of nuclei based on their half-lives and type of emission. For an application of the production of medical radioisotopes, we investigated the production of Kr-42 and Mn-51 radioisotopes via deuteron and neutron induced reaction processes. Materials and method The productions of K-42 and Mn-51 radioisotopes used for medical aims were carried out by neutron and deuteron induced reaction in energy region between 1 MeV and 30 MeV incident energy. Therefore, we used 45Sc(n,α)42K and 50Cr(d,n)51Mn reactions where the purities of the target materials are above 99% and each target is uniform [5,7,8]. The cross-section calculations were performed two component exciton models via TALYS 1.9 code [9] and the level density model was chosen Fermi gas model with constant temperature [1]. The calculated results for each reaction were compared with experimental data obtained from Exfor database [10]. Results and discussion The calculated cross-sections of 45Sc(n,α)42K and 50Cr(d,n)51Mn reactions are presented in figures 1 and 2 as dependent on incident energy. In 45Sc(n,α)42K reaction, there are a lot of experimental data measured by Subasi et al. (1998), Molla et al. (1998), Doczi et al. (1998), Bostan and Qaim (1994), Grallert et al. (1993), Belgaid et al. (1992), Ikeda et al. (1988), Levkovskii et al. (1969), Bayhurst and Prestwood (1961) [11-19], and it is clear that the calculated cross-section generally consistent with the experimental data, especially in the maximum cross-section values about 14 MeV neutron incident energy where the experimental cross-section values reach up to 70 MeV. Furthermore, for 50Cr(d,n)51Mn reaction, the experimental data reported by Klein et al. (2000) [20] agree with the calculated cross-section curves from threshold to 5 MeV; however, beyond 5 MeV, the experimental data are higher than the theoretical cross-section curves. On the other hand, both experimental and theoretical values are the same up to 5 MeV (Figure 2). Conclusion In this work, we calculated the production of 51Mn and 42K radioisotopes for neutron and deuteron induced reactions and the obtained results were compared with experimental data in the literature data. The calculated data were in good agreement with experimental data in maximum cross-section values which define the appropriate incident energy. Additionally, to produce 51Mn radioisotope, the deuteron induced reaction do not has enough experimental and theoretical results in the literature. Therefore, we can propose new works for the production of 51Mn as both experimental and theoretical. Artun O (2019) An application and importance of production of medical radioisotopes used in cancer therapy and diagnosis Volume 3: 2-3 Med Res Innov, 2019 doi: 10.15761/MRI.1000155 References 1. Artun O (2019) Calculation of productions of medical 201Pb, 198Au, 186Re, 111Ag, 103Pd, 90Y, 89Sr, 77Kr, 77As, 67Cu, 64Cu, 47Sc and 32P nuclei used in cancer therapy via phenomenological and microscopic level density models. Appl Radiat Isot 144: 64-79. [Crossref] 2. Artun O (2018) Calculation of productions of PET radioisotopes via phenomenological level density models. Radiat Phys Chem 149: 73-83. 3. Artun O (2018) Investigation of the productions of medical 82Sr and 68Ge for 82Sr/82Rb and 68Ge/68Ga generators via proton accelerator. Nucl Sci Tech 29: 137. 4. Artun O (2018) A study of some nuclear structure properties of 11C, 13N, 15O, 18F, 52Mn, 52Fe, 60Cu, 62Zn, 63Zn, 66Ga, 68Ga, 76Br, 81Rb, 82Rb, 82Sr, 83Sr, 86Y, 89Zr and 92Rb nuclei used for PET in the axial deformation. Indian J Phys 92: 1449-1460. 5. Artun O (2017) Investigation of the production of cobalt-60 via particle accelerator. Nucl Tech Radiat Protec 32: 327-333. 6. Cancer treatment (2019). [https://www.cancer.gov/about-cancer/treatment/types/ radiation-therapy/external-beam] 7. Artun O (2017) Estimation of the production of medical Ac-225 on thorium material via proton accelerator. Appl Radiat Isot 127: 166-172. [Crossref] 8. Artun O (2017) Investigation of the production of promethium-147 via particle accelerator. Indian J Phys 91: 909-914. 9. Koning A, Hilaire S, Goriely S (2017) Talys manual 1.9. . 10. Exfor (2019) Experimental Nuclear Reaction Data. . 11. Subasi M, Erduran MN, Bostan M, Reyhancan IA, Gueltekin E, et al. (1998) (n,alpha) reaction cross sections of 44Ca, 45Sc and 51V nuclei from 13.6 to 14.9 MeV. Nucl Sci Eng 130: 254. 12. Molla NI, Basunia S, Miah RU, Hossain SM, Rahman M, et al. (1998) Radiochemical study of the Sc-45(n,p)Ac-45 and Y-89(n,p)Sr-89 reactions in the neutron energy range of 13.9 to 14.7 MeV. Radiochim Acta 80: 189. [Crossref] Figure 1. Calculation of cross-section of 45Sc(n,α)42K reaction. Figure 2. Calculation of cross-section of 50Cr(d,n)51Mn reaction. Artun O (2019) An application and importance of production of medical radioisotopes used in cancer therapy and diagnosis Volume 3: 3-3 Med Res Innov, 2019 doi: 10.15761/MRI.1000155 Copyright: ©2019 Artun O. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 13. Doczi R, Semkova V, Fenyvesi A, Yamamuro N, Buczko CM, et al. (1998) Excitation functions of some (n,p) and (n,alpha) reactions from threshold to 16 MeV. Nucl Sci Eng 129: 164. 14. Bostan M, Qaim SM (1994) Excitation functions of threshold reactions on 45Sc and 55Mn induced by 6 to 13 MeV neutrons. Phys Rev C Nucl Phys 49: 266-271. [Crossref] 15. Grallert A Csikai J, Buczko CM, Shaddad I (1993) Investigations on the systematics in (n,a) cross sections at 14.6 MeV. IAEA Nucl Data Sect. Report 286: 131. 16. Belgaid M, Siad M, Allab M (1992) Measurement of 14.7 MeV Neutron Cross Sections for Several Isotopes. J Radioanalytical Nucl Chem Letters 166: 493. 17. Ikeda Y, Konno C, Oishi K, Nakamura T, Miyade H, et al. (1988) Activation cross section measurements for fusion reactor structural materials at neutron energy from 13.3 to 15.0 MeV using FNS facility. JAERI Reports No 1312. [Crossref] 18. Levkovskii VN, Kovel`skaya GE, Vinitskaya GP, Stepanov VM, Sokol`ski VV (1969) Cross sections of the (n,p) and (n,alpha) reactions at 14.8 MeV . Sov J Nucl Phys 8: 4. 19. Bayhurst BP, Prestwood RJ (1961) (n,p) and (n,alpha) Excitation functions of several nuclei from 7.0 to 19.8 MeV. J Inorg Nucl Chem 23:173. 20. Klein ATJ, Roesch F, Qaim SM (2000) Investigation of Cr-50(d,n)Mn-51 and NatCr(p,x)Mn-51 processes with respect to the production of the positron emitter Mn-51. Radiochimica Acta 88: 253.\",\"PeriodicalId\":93126,\"journal\":{\"name\":\"Medical research and innovations\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical research and innovations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15761/MRI.1000155\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical research and innovations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15761/MRI.1000155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文从癌症的治疗和诊断出发,指出了医用放射性同位素在核医学中的重要性。此外,对医用放射性同位素的可能生产方法进行了评价,并通过与文献实验数据的比较,讨论了利用中子和氘核诱导反应工艺生产两种医用放射性同位素的应用。*通讯作者:Ozan Artun,土耳其Zonguldak blent Ecevit大学物理系,E-mail: ozanartun@beun.edu.tr / ozanartun@yahoo.com录用日期:2019年3月25日;简介核医学在癌细胞的诊断和治疗中发挥着重要作用,使用不同的设备,其中一些是用于诊断目的的单光子发射计算机断层扫描(SPECT),正电子发射断层扫描(PET)。除了诊断之外,核医学还提供癌症治疗;然而,治疗可分为内外两部分。例如,调强放射治疗(IMRT)[5]是一种三维适形放射治疗[6]是一种外部治疗设备。另一方面,近距离治疗是一种相当重要的方法,可以称为内部治疗。在文献中,有很多在核医学中使用医用放射性同位素的装置和方法。它们的共同点肯定是用于癌症诊断和治疗的放射性同位素,这些放射性同位素由核反应堆或粒子加速器通过中子反应(n,γ)或带电粒子诱导反应过程(如质子,氘核和α粒子)产生。在核反应堆中产生的一些著名的放射性同位素可能产生Mo-99、P-32、Cu-64、Y-90等放射性同位素。此外,由带电粒子诱导反应产生的医用放射性同位素通常用于PET和SPECT。这种生产是在能量范围为1-50 MeV的粒子加速器上进行的,如O-15、F-18、Ga-68等。但是,为了生产用于治疗目的的Ac-225,需要更高能量的粒子加速器。因此,核医学中使用的放射性同位素的生产方法可以根据半衰期和发射类型来改变原子核的种类。为了医用放射性同位素生产的应用,我们研究了通过氘和中子诱导反应过程生产Kr-42和Mn-51放射性同位素。材料和方法在入射能量1 - 30 MeV之间的能量区,用中子和氘核诱导反应制备了医用放射性同位素K-42和Mn-51。因此,我们采用45Sc(n,α)42K和50Cr(d,n)51Mn反应,目标材料的纯度在99%以上,且各目标均匀[5,7,8]。横截面计算采用TALYS 1.9代码[9]进行双组分激子模型计算,能级密度模型选用恒温费米气体模型[1]。每个反应的计算结果与Exfor数据库[10]中的实验数据进行了比较。45Sc(n,α)42K和50Cr(d,n)51Mn反应的计算截面随入射能量的变化如图1和图2所示。在45Sc(n,α)42K反应中,Subasi et al.(1998)、Molla et al.(1998)、Doczi et al.(1998)、Bostan and Qaim(1994)、Grallert et al.(1993)、Belgaid et al.(1992)、Ikeda et al.(1988)、Levkovskii et al.(1969)、Bayhurst and Prestwood(1961)[11-19]测量了大量实验数据,显然计算截面与实验数据基本一致。特别是在中子入射能量14 MeV左右的最大截面值上,实验截面值高达70 MeV。此外,对于50Cr(d,n)51Mn反应,Klein等(2000)[20]报道的实验数据与从阈值到5 MeV的计算截面曲线吻合;但在5 MeV以上,实验数据高于理论截面曲线。另一方面,在5 MeV以内,实验值和理论值是一致的(图2)。结论本工作中,我们计算了中子和氘核诱导反应产生51Mn和42K放射性同位素,并将所得结果与文献数据中的实验数据进行了比较。计算数据与实验数据在确定入射能量的最大截面值上吻合较好。另外,为了产生51Mn放射性同位素,氘诱导反应在文献中没有足够的实验和理论结果。因此,我们可以为51Mn的生产提出新的实验和理论工作。 本文从癌症的治疗和诊断出发,指出了医用放射性同位素在核医学中的重要性。此外,对医用放射性同位素的可能生产方法进行了评价,并通过与文献实验数据的比较,讨论了利用中子和氘核诱导反应工艺生产两种医用放射性同位素的应用。*通讯作者:Ozan Artun,土耳其Zonguldak blent Ecevit大学物理系,E-mail: ozanartun@beun.edu.tr / ozanartun@yahoo.com录用日期:2019年3月25日;简介核医学在癌细胞的诊断和治疗中发挥着重要作用,使用不同的设备,其中一些是用于诊断目的的单光子发射计算机断层扫描(SPECT),正电子发射断层扫描(PET)。除了诊断之外,核医学还提供癌症治疗;然而,治疗可分为内外两部分。例如,调强放射治疗(IMRT)[5]是一种三维适形放射治疗[6]是一种外部治疗设备。另一方面,近距离治疗是一种相当重要的方法,可以称为内部治疗。在文献中,有很多在核医学中使用医用放射性同位素的装置和方法。它们的共同点肯定是用于癌症诊断和治疗的放射性同位素,这些放射性同位素由核反应堆或粒子加速器通过中子反应(n,γ)或带电粒子诱导反应过程(如质子,氘核和α粒子)产生。在核反应堆中产生的一些著名的放射性同位素可能产生Mo-99、P-32、Cu-64、Y-90等放射性同位素。此外,由带电粒子诱导反应产生的医用放射性同位素通常用于PET和SPECT。这种生产是在能量范围为1-50 MeV的粒子加速器上进行的,如O-15、F-18、Ga-68等。但是,为了生产用于治疗目的的Ac-225,需要更高能量的粒子加速器。因此,核医学中使用的放射性同位素的生产方法可以根据半衰期和发射类型来改变原子核的种类。为了医用放射性同位素生产的应用,我们研究了通过氘和中子诱导反应过程生产Kr-42和Mn-51放射性同位素。材料和方法在入射能量1 - 30 MeV之间的能量区,用中子和氘核诱导反应制备了医用放射性同位素K-42和Mn-51。因此,我们采用45Sc(n,α)42K和50Cr(d,n)51Mn反应,目标材料的纯度在99%以上,且各目标均匀[5,7,8]。横截面计算采用TALYS 1.9代码[9]进行双组分激子模型计算,能级密度模型选用恒温费米气体模型[1]。每个反应的计算结果与Exfor数据库[10]中的实验数据进行了比较。45Sc(n,α)42K和50Cr(d,n)51Mn反应的计算截面随入射能量的变化如图1和图2所示。在45Sc(n,α)42K反应中,Subasi et al.(1998)、Molla et al.(1998)、Doczi et al.(1998)、Bostan and Qaim(1994)、Grallert et al.(1993)、Belgaid et al.(1992)、Ikeda et al.(1988)、Levkovskii et al.(1969)、Bayhurst and Prestwood(1961)[11-19]测量了大量实验数据,显然计算截面与实验数据基本一致。特别是在中子入射能量14 MeV左右的最大截面值上,实验截面值高达70 MeV。此外,对于50Cr(d,n)51Mn反应,Klein等(2000)[20]报道的实验数据与从阈值到5 MeV的计算截面曲线吻合;但在5 MeV以上,实验数据高于理论截面曲线。另一方面,在5 MeV以内,实验值和理论值是一致的(图2)。结论本工作中,我们计算了中子和氘核诱导反应产生51Mn和42K放射性同位素,并将所得结果与文献数据中的实验数据进行了比较。计算数据与实验数据在确定入射能量的最大截面值上吻合较好。另外,为了产生51Mn放射性同位素,氘诱导反应在文献中没有足够的实验和理论结果。因此,我们可以为51Mn的生产提出新的实验和理论工作。 Artun O(2019)生产用于癌症治疗和诊断的医用放射性同位素的应用和重要性vol . 3: 2-3 Med Res Innov, 2019 doi: 10.15761/MRI.1000155引用1。Artun O(2019)利用现象和微观水平密度模型计算用于癌症治疗的医用201Pb、198Au、186Re、111Ag、103Pd、90Y、89Sr、77Kr、77As、67Cu、64Cu、47Sc和32P核的产量。苹果辐射度144:64-79。(Crossref) 2。Artun O(2018)通过现象学水平密度模型计算PET放射性同位素的产量。放射物理学报(自然科学版),49(3):773 - 783。3.Artun O (2018) 82Sr/82Rb和68Ge/68Ga发生器用质子加速器生产医用82Sr和68Ge的研究。核科学技术29:137。4. Artun O(2018)用于PET轴向变形的11C、13N、15O、18F、52Mn、52Fe、60Cu、62Zn、63Zn、66Ga、68Ga、76Br、81Rb、82Rb、82Sr、83Sr、86Y、89Zr和92Rb核的部分结构性能研究。[J] .物理学报32(2):1449-1460。5. Artun O(2017)利用粒子加速器生产钴-60的研究。核与辐射防护,32(3):327-333。6. 癌症治疗(2019年)。[https://www.cancer.gov/about-cancer/treatment/types/放射治疗/外束]Artun O(2017)利用质子加速器在钍材料上生产医用Ac-225的估计。苹果辐射等127:166-172。(Crossref) 8。Artun O(2017)粒子加速器生产钷-147的研究。[J] .物理学报,21(3):559 - 564。9. Koning A, Hilaire S, Goriely S(2017)统计手册1.9. [j]。10. Exfor(2019)实验核反应数据[j]。11. Subasi M, Erduran MN, Bostan M, Reyhancan IA, Gueltekin E等。(1998)13.6 ~ 14.9 MeV 44Ca, 45Sc和51V核的反应截面(n, α)。核科学与工程130:254。12. Molla NI, Basunia S, Miah RU, Hossain SM, Rahman M等。(1998)中子能量13.9 ~ 14.7 MeV范围内Sc-45(n,p)Ac-45和Y-89(n,p)Sr-89反应的放射化学研究。放射性化学学报80:189。[交叉]图1。45Sc(n,α)42K反应截面计算。图2。50Cr(d,n)51Mn反应截面计算。Artun O(2019)生产用于癌症治疗和诊断的医用放射性同位素的应用和重要性vol . 3: 3-3 Med Res Innov, 2019 doi: 10.15761/MRI.1000155版权所有:©2019 Artun O.这是一篇根据知识共享署名许可条款发布的开放获取文章,允许在任何媒体上不受限制地使用、分发和复制,前提是注明原作者和来源。13. Doczi R, Semkova V, Fenyvesi A, Yamamuro N, Buczko CM等。(1998)一些(N, p)和(N, α)反应从阈值到16 MeV的激发函数。核科学与工程学报[j];14. Bostan M, Qaim SM (1994) 6 ~ 13mev中子诱导45Sc和55Mn阈值反应的激发函数。物理学报,49(4):366 - 371。(Crossref) 15。[J]陈志强,陈志强,陈志强,等(1993)大气中(n, A)辐射剖面的系统学研究。]原子能机构核数据部分,报告286:131。16. Belgaid M, Siad M, Allab M(1992)几种同位素14.7 MeV中子截面的测量。[J] .放射化学学报,2004,19(4):444 - 444。17. 池田Y, Konno C, Oishi K, Nakamura T, Miyade H等。(1988)用FNS装置测量中子能量从13.3到15.0 MeV的聚变反应堆结构材料的激活截面。JAERI第1312号报告。(Crossref) 18。Levkovskii VN, Kovel 'skaya GE, Vinitskaya GP, Stepanov VM, Sokol 'ski VV (1969) 14.8 MeV下(n,p)和(n,alpha)反应的截面。[J] .核物理学报8:4。19. Bayhurst BP, Prestwood RJ (1961) (n,p)和(n,alpha) 7.0 ~ 19.8 MeV几个核的激发函数。[J] .核化学学报,23(3):173。20.Klein ATJ, Roesch F, Qaim SM (2000) Cr-50(d,n)Mn-51和NatCr(p,x)Mn-51工艺对正电子发射体Mn-51产生的影响。放射性化学学报(英文版)88(2):253。 Artun O(2019)生产用于癌症治疗和诊断的医用放射性同位素的应用和重要性vol . 3: 2-3 Med Res Innov, 2019 doi: 10.15761/MRI.1000155引用1。Artun O(2019)利用现象和微观水平密度模型计算用于癌症治疗的医用201Pb、198Au、186Re、111Ag、103Pd、90Y、89Sr、77Kr、77As、67Cu、64Cu、47Sc和32P核的产量。苹果辐射度144:64-79。(Crossref) 2。Artun O(2018)通过现象学水平密度模型计算PET放射性同位素的产量。放射物理学报(自然科学版),49(3):773 - 783。3.Artun O (2018) 82Sr/82Rb和68Ge/68Ga发生器用质子加速器生产医用82Sr和68Ge的研究。核科学技术29:137。4. Artun O(2018)用于PET轴向变形的11C、13N、15O、18F、52Mn、52Fe、60Cu、62Zn、63Zn、66Ga、68Ga、76Br、81Rb、82Rb、82Sr、83Sr、86Y、89Zr和92Rb核的部分结构性能研究。[J] .物理学报32(2):1449-1460。5. Artun O(2017)利用粒子加速器生产钴-60的研究。核与辐射防护,32(3):327-333。6. 癌症治疗(2019年)。[https://www.cancer.gov/about-cancer/treatment/types/放射治疗/外束]Artun O(2017)利用质子加速器在钍材料上生产医用Ac-225的估计。苹果辐射等127:166-172。(Crossref) 8。Artun O(2017)粒子加速器生产钷-147的研究。[J] .物理学报,21(3):559 - 564。9. Koning A, Hilaire S, Goriely S(2017)统计手册1.9. [j]。10. Exfor(2019)实验核反应数据[j]。11. Subasi M, Erduran MN, Bostan M, Reyhancan IA, Gueltekin E等。(1998)13.6 ~ 14.9 MeV 44Ca, 45Sc和51V核的反应截面(n, α)。核科学与工程130:254。12. Molla NI, Basunia S, Miah RU, Hossain SM, Rahman M等。(1998)中子能量13.9 ~ 14.7 MeV范围内Sc-45(n,p)Ac-45和Y-89(n,p)Sr-89反应的放射化学研究。放射性化学学报80:189。[交叉]图1。45Sc(n,α)42K反应截面计算。图2。50Cr(d,n)51Mn反应截面计算。Artun O(2019)生产用于癌症治疗和诊断的医用放射性同位素的应用和重要性vol . 3: 3-3 Med Res Innov, 2019 doi: 10.15761/MRI.1000155版权所有:©2019 Artun O.这是一篇根据知识共享署名许可条款发布的开放获取文章,允许在任何媒体上不受限制地使用、分发和复制,前提是注明原作者和来源。13. Doczi R, Semkova V, Fenyvesi A, Yamamuro N, Buczko CM等。(1998)一些(N, p)和(N, α)反应从阈值到16 MeV的激发函数。核科学与工程学报[j];14. Bostan M, Qaim SM (1994) 6 ~ 13mev中子诱导45Sc和55Mn阈值反应的激发函数。物理学报,49(4):366 - 371。(Crossref) 15。[J]陈志强,陈志强,陈志强,等(1993)大气中(n, A)辐射剖面的系统学研究。]原子能机构核数据部分,报告286:131。16. Belgaid M, Siad M, Allab M(1992)几种同位素14.7 MeV中子截面的测量。[J] .放射化学学报,2004,19(4):444 - 444。17. 池田Y, Konno C, Oishi K, Nakamura T, Miyade H等。(1988)用FNS装置测量中子能量从13.3到15.0 MeV的聚变反应堆结构材料的激活截面。JAERI第1312号报告。(Crossref) 18。Levkovskii VN, Kovel 'skaya GE, Vinitskaya GP, Stepanov VM, Sokol 'ski VV (1969) 14.8 MeV下(n,p)和(n,alpha)反应的截面。[J] .核物理学报8:4。19. Bayhurst BP, Prestwood RJ (1961) (n,p)和(n,alpha) 7.0 ~ 19.8 MeV几个核的激发函数。[J] .核化学学报,23(3):173。20.Klein ATJ, Roesch F, Qaim SM (2000) Cr-50(d,n)Mn-51和NatCr(p,x)Mn-51工艺对正电子发射体Mn-51产生的影响。放射性化学学报(英文版)88(2):253。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An application and importance of production of medical radioisotopes used in cancer therapy and diagnosis
This work points out importance of medical radioisotopes in nuclear medicine based on treatment and diagnosis of cancer. Moreover, possible production methods of medical radioisotopes are evaluated, and an application for the production of two medical radioisotopes through neutron and deuteron induced reaction processes is discussed by comparing with experimental data in the literature. *Correspondence to: Ozan Artun, Department of Physics, Zonguldak Bülent Ecevit University, Turkey, E-mail: ozanartun@beun.edu.tr / ozanartun@yahoo.com Received: March 12, 2019; Accepted: March 25, 2019; Published: March 28, 2019 Introduction Nuclear medicine plays an important role in diagnosis and treatment of cancerous cells using different devices some of which are Single Photon Emission Computed Tomography (SPECT), Positron Emission Tomography (PET), which are used in diagnostic aims [14]. Addition to diagnosis, cancer treatment is also available in nuclear medicine; however, the therapy can be separated two section as internal and external therapy. For instance, Intensity-modulated radiation therapy (IMRT) [5] that is a type of 3-D conformal radiation therapy [6] is an external therapy device. On the other hand, brachytherapy that is fairly important method can be called as internal therapy. In the literature, a lot of devices and methods to use medical radioisotopes in nuclear medicine are available in the literature. Common point of ones is definitely radioisotopes used in diagnosis and treatment of cancer, and these radioisotopes are produced by either nuclear reactors or particle accelerators via neutron reactions like (n,γ) or charged particle induced reaction processes e.g. proton, deuteron and alpha particles. Some of the famous radioisotopes produced in nuclear reactors may give Mo-99, P-32, Cu-64, Y-90 radioisotopes. Furthermore, medical radioisotopes produced by the charged particle induced reactions are commonly used in PET and SPECT. Such a production is carried out particle accelerators with energy ranges 1-50 MeV such as O-15, F-18, Ga-68 etc. But, for production of Ac-225 that is therapeutic purpose particle accelerators with higher energy are necessary [7]. Therefore, the production method of radioisotopes used in nuclear medicine can change kind of nuclei based on their half-lives and type of emission. For an application of the production of medical radioisotopes, we investigated the production of Kr-42 and Mn-51 radioisotopes via deuteron and neutron induced reaction processes. Materials and method The productions of K-42 and Mn-51 radioisotopes used for medical aims were carried out by neutron and deuteron induced reaction in energy region between 1 MeV and 30 MeV incident energy. Therefore, we used 45Sc(n,α)42K and 50Cr(d,n)51Mn reactions where the purities of the target materials are above 99% and each target is uniform [5,7,8]. The cross-section calculations were performed two component exciton models via TALYS 1.9 code [9] and the level density model was chosen Fermi gas model with constant temperature [1]. The calculated results for each reaction were compared with experimental data obtained from Exfor database [10]. Results and discussion The calculated cross-sections of 45Sc(n,α)42K and 50Cr(d,n)51Mn reactions are presented in figures 1 and 2 as dependent on incident energy. In 45Sc(n,α)42K reaction, there are a lot of experimental data measured by Subasi et al. (1998), Molla et al. (1998), Doczi et al. (1998), Bostan and Qaim (1994), Grallert et al. (1993), Belgaid et al. (1992), Ikeda et al. (1988), Levkovskii et al. (1969), Bayhurst and Prestwood (1961) [11-19], and it is clear that the calculated cross-section generally consistent with the experimental data, especially in the maximum cross-section values about 14 MeV neutron incident energy where the experimental cross-section values reach up to 70 MeV. Furthermore, for 50Cr(d,n)51Mn reaction, the experimental data reported by Klein et al. (2000) [20] agree with the calculated cross-section curves from threshold to 5 MeV; however, beyond 5 MeV, the experimental data are higher than the theoretical cross-section curves. On the other hand, both experimental and theoretical values are the same up to 5 MeV (Figure 2). Conclusion In this work, we calculated the production of 51Mn and 42K radioisotopes for neutron and deuteron induced reactions and the obtained results were compared with experimental data in the literature data. The calculated data were in good agreement with experimental data in maximum cross-section values which define the appropriate incident energy. Additionally, to produce 51Mn radioisotope, the deuteron induced reaction do not has enough experimental and theoretical results in the literature. Therefore, we can propose new works for the production of 51Mn as both experimental and theoretical. Artun O (2019) An application and importance of production of medical radioisotopes used in cancer therapy and diagnosis Volume 3: 2-3 Med Res Innov, 2019 doi: 10.15761/MRI.1000155 References 1. Artun O (2019) Calculation of productions of medical 201Pb, 198Au, 186Re, 111Ag, 103Pd, 90Y, 89Sr, 77Kr, 77As, 67Cu, 64Cu, 47Sc and 32P nuclei used in cancer therapy via phenomenological and microscopic level density models. Appl Radiat Isot 144: 64-79. [Crossref] 2. Artun O (2018) Calculation of productions of PET radioisotopes via phenomenological level density models. Radiat Phys Chem 149: 73-83. 3. Artun O (2018) Investigation of the productions of medical 82Sr and 68Ge for 82Sr/82Rb and 68Ge/68Ga generators via proton accelerator. Nucl Sci Tech 29: 137. 4. Artun O (2018) A study of some nuclear structure properties of 11C, 13N, 15O, 18F, 52Mn, 52Fe, 60Cu, 62Zn, 63Zn, 66Ga, 68Ga, 76Br, 81Rb, 82Rb, 82Sr, 83Sr, 86Y, 89Zr and 92Rb nuclei used for PET in the axial deformation. Indian J Phys 92: 1449-1460. 5. Artun O (2017) Investigation of the production of cobalt-60 via particle accelerator. Nucl Tech Radiat Protec 32: 327-333. 6. Cancer treatment (2019). [https://www.cancer.gov/about-cancer/treatment/types/ radiation-therapy/external-beam] 7. Artun O (2017) Estimation of the production of medical Ac-225 on thorium material via proton accelerator. Appl Radiat Isot 127: 166-172. [Crossref] 8. Artun O (2017) Investigation of the production of promethium-147 via particle accelerator. Indian J Phys 91: 909-914. 9. Koning A, Hilaire S, Goriely S (2017) Talys manual 1.9. . 10. Exfor (2019) Experimental Nuclear Reaction Data. . 11. Subasi M, Erduran MN, Bostan M, Reyhancan IA, Gueltekin E, et al. (1998) (n,alpha) reaction cross sections of 44Ca, 45Sc and 51V nuclei from 13.6 to 14.9 MeV. Nucl Sci Eng 130: 254. 12. Molla NI, Basunia S, Miah RU, Hossain SM, Rahman M, et al. (1998) Radiochemical study of the Sc-45(n,p)Ac-45 and Y-89(n,p)Sr-89 reactions in the neutron energy range of 13.9 to 14.7 MeV. Radiochim Acta 80: 189. [Crossref] Figure 1. Calculation of cross-section of 45Sc(n,α)42K reaction. Figure 2. Calculation of cross-section of 50Cr(d,n)51Mn reaction. Artun O (2019) An application and importance of production of medical radioisotopes used in cancer therapy and diagnosis Volume 3: 3-3 Med Res Innov, 2019 doi: 10.15761/MRI.1000155 Copyright: ©2019 Artun O. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 13. Doczi R, Semkova V, Fenyvesi A, Yamamuro N, Buczko CM, et al. (1998) Excitation functions of some (n,p) and (n,alpha) reactions from threshold to 16 MeV. Nucl Sci Eng 129: 164. 14. Bostan M, Qaim SM (1994) Excitation functions of threshold reactions on 45Sc and 55Mn induced by 6 to 13 MeV neutrons. Phys Rev C Nucl Phys 49: 266-271. [Crossref] 15. Grallert A Csikai J, Buczko CM, Shaddad I (1993) Investigations on the systematics in (n,a) cross sections at 14.6 MeV. IAEA Nucl Data Sect. Report 286: 131. 16. Belgaid M, Siad M, Allab M (1992) Measurement of 14.7 MeV Neutron Cross Sections for Several Isotopes. J Radioanalytical Nucl Chem Letters 166: 493. 17. Ikeda Y, Konno C, Oishi K, Nakamura T, Miyade H, et al. (1988) Activation cross section measurements for fusion reactor structural materials at neutron energy from 13.3 to 15.0 MeV using FNS facility. JAERI Reports No 1312. [Crossref] 18. Levkovskii VN, Kovel`skaya GE, Vinitskaya GP, Stepanov VM, Sokol`ski VV (1969) Cross sections of the (n,p) and (n,alpha) reactions at 14.8 MeV . Sov J Nucl Phys 8: 4. 19. Bayhurst BP, Prestwood RJ (1961) (n,p) and (n,alpha) Excitation functions of several nuclei from 7.0 to 19.8 MeV. J Inorg Nucl Chem 23:173. 20. Klein ATJ, Roesch F, Qaim SM (2000) Investigation of Cr-50(d,n)Mn-51 and NatCr(p,x)Mn-51 processes with respect to the production of the positron emitter Mn-51. Radiochimica Acta 88: 253.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of a novel dental thermal imaging application Catatonic stupor and seizures after open-heart surgery: Case report Parameter study of the J-integral over a craze line in a root-channelled tooth Covid-19 and Human Health The durable socio-economic status in the COVID-19 outbreak in Bangladesh
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1