极限学习机的1/2正则化剪枝算法

Ye-tian Fan, Wei Wu, Wenyu Yang, Qin-wei Fan, Jian Wang
{"title":"极限学习机的1/2正则化剪枝算法","authors":"Ye-tian Fan, Wei Wu, Wenyu Yang, Qin-wei Fan, Jian Wang","doi":"10.1631/jzus.C1300197","DOIUrl":null,"url":null,"abstract":"Compared with traditional learning methods such as the back propagation (BP) method, extreme learning machine provides much faster learning speed and needs less human intervention, and thus has been widely used. In this paper we combine the L1/2 regularization method with extreme learning machine to prune extreme learning machine. A variable learning coefficient is employed to prevent too large a learning increment. A numerical experiment demonstrates that a network pruned L1/2 regularization has fewer hidden nodes but provides better performance than both the original network and the network pruned by L2 regularization.","PeriodicalId":49947,"journal":{"name":"Journal of Zhejiang University-Science C-Computers & Electronics","volume":"15 1","pages":"119 - 125"},"PeriodicalIF":0.0000,"publicationDate":"2014-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1631/jzus.C1300197","citationCount":"12","resultStr":"{\"title\":\"A pruning algorithm with L1/2 regularizer for extreme learning machine\",\"authors\":\"Ye-tian Fan, Wei Wu, Wenyu Yang, Qin-wei Fan, Jian Wang\",\"doi\":\"10.1631/jzus.C1300197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compared with traditional learning methods such as the back propagation (BP) method, extreme learning machine provides much faster learning speed and needs less human intervention, and thus has been widely used. In this paper we combine the L1/2 regularization method with extreme learning machine to prune extreme learning machine. A variable learning coefficient is employed to prevent too large a learning increment. A numerical experiment demonstrates that a network pruned L1/2 regularization has fewer hidden nodes but provides better performance than both the original network and the network pruned by L2 regularization.\",\"PeriodicalId\":49947,\"journal\":{\"name\":\"Journal of Zhejiang University-Science C-Computers & Electronics\",\"volume\":\"15 1\",\"pages\":\"119 - 125\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1631/jzus.C1300197\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Zhejiang University-Science C-Computers & Electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1631/jzus.C1300197\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Zhejiang University-Science C-Computers & Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1631/jzus.C1300197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

与BP (back propagation)方法等传统的学习方法相比,极限学习机的学习速度快得多,并且需要较少的人为干预,因此得到了广泛的应用。本文将L1/2正则化方法与极值学习机相结合,对极值学习机进行剪枝。采用可变学习系数防止学习增量过大。数值实验表明,与原始网络和L2正则化修剪网络相比,经过L2 /2正则化修剪后的网络隐藏节点更少,但性能更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A pruning algorithm with L1/2 regularizer for extreme learning machine
Compared with traditional learning methods such as the back propagation (BP) method, extreme learning machine provides much faster learning speed and needs less human intervention, and thus has been widely used. In this paper we combine the L1/2 regularization method with extreme learning machine to prune extreme learning machine. A variable learning coefficient is employed to prevent too large a learning increment. A numerical experiment demonstrates that a network pruned L1/2 regularization has fewer hidden nodes but provides better performance than both the original network and the network pruned by L2 regularization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
2.66667 months
期刊最新文献
Supply chain network design under uncertainty with new insights from contracts Degree elevation of unified and extended spline curves A 31–45.5 GHz injection-locked frequency divider in 90-nm CMOS technology Optimizing urban traffic control using a rational agent Speech enhancement with a GSC-like structure employing sparse coding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1