查询在线社交网络中的动态社区

L. Weigang, E. Sandes, Jianya Zheng, A. D. de Melo, L. Uden
{"title":"查询在线社交网络中的动态社区","authors":"L. Weigang, E. Sandes, Jianya Zheng, A. D. de Melo, L. Uden","doi":"10.1631/jzus.C1300281","DOIUrl":null,"url":null,"abstract":"Online social networks (OSNs) offer people the opportunity to join communities where they share a common interest or objective. This kind of community is useful for studying the human behavior, diffusion of information, and dynamics of groups. As the members of a community are always changing, an efficient solution is needed to query information in real time. This paper introduces the Follow Model to present the basic relationship between users in OSNs, and combines it with the MapReduce solution to develop new algorithms with parallel paradigms for querying. Two models for reverse relation and high-order relation of the users were implemented in the Hadoop system. Based on 75 GB message data and 26 GB relation network data from Twitter, a case study was realized using two dynamic discussion communities: #musicmonday and #beatcancer. The querying performance demonstrates that the new solution with the implementation in Hadoop significantly improves the ability to find useful information from OSNs.","PeriodicalId":49947,"journal":{"name":"Journal of Zhejiang University-Science C-Computers & Electronics","volume":"2 1","pages":"81 - 90"},"PeriodicalIF":0.0000,"publicationDate":"2014-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1631/jzus.C1300281","citationCount":"13","resultStr":"{\"title\":\"Querying dynamic communities in online social networks\",\"authors\":\"L. Weigang, E. Sandes, Jianya Zheng, A. D. de Melo, L. Uden\",\"doi\":\"10.1631/jzus.C1300281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Online social networks (OSNs) offer people the opportunity to join communities where they share a common interest or objective. This kind of community is useful for studying the human behavior, diffusion of information, and dynamics of groups. As the members of a community are always changing, an efficient solution is needed to query information in real time. This paper introduces the Follow Model to present the basic relationship between users in OSNs, and combines it with the MapReduce solution to develop new algorithms with parallel paradigms for querying. Two models for reverse relation and high-order relation of the users were implemented in the Hadoop system. Based on 75 GB message data and 26 GB relation network data from Twitter, a case study was realized using two dynamic discussion communities: #musicmonday and #beatcancer. The querying performance demonstrates that the new solution with the implementation in Hadoop significantly improves the ability to find useful information from OSNs.\",\"PeriodicalId\":49947,\"journal\":{\"name\":\"Journal of Zhejiang University-Science C-Computers & Electronics\",\"volume\":\"2 1\",\"pages\":\"81 - 90\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1631/jzus.C1300281\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Zhejiang University-Science C-Computers & Electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1631/jzus.C1300281\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Zhejiang University-Science C-Computers & Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1631/jzus.C1300281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

在线社交网络(OSNs)为人们提供了加入拥有共同兴趣或目标的社区的机会。这种社区对于研究人类行为、信息传播和群体动态非常有用。由于社区成员是不断变化的,需要一种高效的实时信息查询解决方案。本文引入Follow Model来表示osn中用户之间的基本关系,并将其与MapReduce解决方案相结合,开发了新的并行查询算法。在Hadoop系统中实现了用户的反向关系和高阶关系两个模型。基于来自Twitter的75 GB消息数据和26 GB关系网络数据,使用两个动态讨论社区:#musicmonday和#beatcancer实现了一个案例研究。查询性能表明,在Hadoop中实现的新解决方案显著提高了从osn中查找有用信息的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Querying dynamic communities in online social networks
Online social networks (OSNs) offer people the opportunity to join communities where they share a common interest or objective. This kind of community is useful for studying the human behavior, diffusion of information, and dynamics of groups. As the members of a community are always changing, an efficient solution is needed to query information in real time. This paper introduces the Follow Model to present the basic relationship between users in OSNs, and combines it with the MapReduce solution to develop new algorithms with parallel paradigms for querying. Two models for reverse relation and high-order relation of the users were implemented in the Hadoop system. Based on 75 GB message data and 26 GB relation network data from Twitter, a case study was realized using two dynamic discussion communities: #musicmonday and #beatcancer. The querying performance demonstrates that the new solution with the implementation in Hadoop significantly improves the ability to find useful information from OSNs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
2.66667 months
期刊最新文献
Supply chain network design under uncertainty with new insights from contracts Degree elevation of unified and extended spline curves A 31–45.5 GHz injection-locked frequency divider in 90-nm CMOS technology Optimizing urban traffic control using a rational agent Speech enhancement with a GSC-like structure employing sparse coding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1