{"title":"统一和扩展样条曲线的度标高","authors":"Xiao-juan Duan, Guozhen Wang","doi":"10.1631/jzus.C1400076","DOIUrl":null,"url":null,"abstract":"Unified and extended splines (UE-splines), which unify and extend polynomial, trigonometric, and hyperbolic B-splines, inherit most properties of B-splines and have some advantages over B-splines. The interest of this paper is the degree elevation algorithm of UE-spline curves and its geometric meaning. Our main idea is to elevate the degree of UE-spline curves one knot interval by one knot interval. First, we construct a new class of basis functions, called bi-order UE-spline basis functions which are defined by the integral definition of splines. Then some important properties of bi-order UE-splines are given, especially for the transformation formulae of the basis functions before and after inserting a knot into the knot vector. Finally, we prove that the degree elevation of UE-spline curves can be interpreted as a process of corner cutting on the control polygons, just as in the manner of B-splines. This degree elevation algorithm possesses strong geometric intuition.","PeriodicalId":49947,"journal":{"name":"Journal of Zhejiang University-Science C-Computers & Electronics","volume":"15 1","pages":"1098 - 1105"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1631/jzus.C1400076","citationCount":"3","resultStr":"{\"title\":\"Degree elevation of unified and extended spline curves\",\"authors\":\"Xiao-juan Duan, Guozhen Wang\",\"doi\":\"10.1631/jzus.C1400076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unified and extended splines (UE-splines), which unify and extend polynomial, trigonometric, and hyperbolic B-splines, inherit most properties of B-splines and have some advantages over B-splines. The interest of this paper is the degree elevation algorithm of UE-spline curves and its geometric meaning. Our main idea is to elevate the degree of UE-spline curves one knot interval by one knot interval. First, we construct a new class of basis functions, called bi-order UE-spline basis functions which are defined by the integral definition of splines. Then some important properties of bi-order UE-splines are given, especially for the transformation formulae of the basis functions before and after inserting a knot into the knot vector. Finally, we prove that the degree elevation of UE-spline curves can be interpreted as a process of corner cutting on the control polygons, just as in the manner of B-splines. This degree elevation algorithm possesses strong geometric intuition.\",\"PeriodicalId\":49947,\"journal\":{\"name\":\"Journal of Zhejiang University-Science C-Computers & Electronics\",\"volume\":\"15 1\",\"pages\":\"1098 - 1105\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1631/jzus.C1400076\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Zhejiang University-Science C-Computers & Electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1631/jzus.C1400076\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Zhejiang University-Science C-Computers & Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1631/jzus.C1400076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Degree elevation of unified and extended spline curves
Unified and extended splines (UE-splines), which unify and extend polynomial, trigonometric, and hyperbolic B-splines, inherit most properties of B-splines and have some advantages over B-splines. The interest of this paper is the degree elevation algorithm of UE-spline curves and its geometric meaning. Our main idea is to elevate the degree of UE-spline curves one knot interval by one knot interval. First, we construct a new class of basis functions, called bi-order UE-spline basis functions which are defined by the integral definition of splines. Then some important properties of bi-order UE-splines are given, especially for the transformation formulae of the basis functions before and after inserting a knot into the knot vector. Finally, we prove that the degree elevation of UE-spline curves can be interpreted as a process of corner cutting on the control polygons, just as in the manner of B-splines. This degree elevation algorithm possesses strong geometric intuition.