{"title":"在一个基于自由硬件的实验原型中估计不确定性,用于测量描述粒子运动的物理变量","authors":"Manuel R. Nevárez Toledo, Verónica Yánez Ortiz","doi":"10.17993/3ctecno.2018.v7n2e26.62-81/","DOIUrl":null,"url":null,"abstract":"The kinematic studies the motion of a particle without considering the effects that produce movement, while the dynamics studies the factors that produce changes in a system. It proposes the establishment of measuring equipment that can record physical parameters focused on the kinematics and dynamics, using the equations deducted from the calculation for the movement, by modifying travel distance, angle of inclination and mass of the objects. The measurement of the time will be used to obtain the uncertainty in the experiments, the dispersion of the available data is related to the size of the sample and the procedure used. In the indirect measurements were used equations due to the correlation in the physical variables for the analysis of uncertainty. One of the methods for uncertainty analysis is based on the statistical analysis, another way to estimate this is through experience or external information available. The experiments made in the inclined plane for the study of the velocity, acceleration and force of friction to angles greater than 15°, showed a relative error of 1.8% in the time variable, the standard uncertainty had a normal distribution with a confidence level of 95%.","PeriodicalId":41375,"journal":{"name":"3c Tecnologia","volume":"1 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2018-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimación de la incertidumbre en un prototipo experimental basado en hardware libre para la medición de variables físicas que describen el movimiento de una partícula\",\"authors\":\"Manuel R. Nevárez Toledo, Verónica Yánez Ortiz\",\"doi\":\"10.17993/3ctecno.2018.v7n2e26.62-81/\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The kinematic studies the motion of a particle without considering the effects that produce movement, while the dynamics studies the factors that produce changes in a system. It proposes the establishment of measuring equipment that can record physical parameters focused on the kinematics and dynamics, using the equations deducted from the calculation for the movement, by modifying travel distance, angle of inclination and mass of the objects. The measurement of the time will be used to obtain the uncertainty in the experiments, the dispersion of the available data is related to the size of the sample and the procedure used. In the indirect measurements were used equations due to the correlation in the physical variables for the analysis of uncertainty. One of the methods for uncertainty analysis is based on the statistical analysis, another way to estimate this is through experience or external information available. The experiments made in the inclined plane for the study of the velocity, acceleration and force of friction to angles greater than 15°, showed a relative error of 1.8% in the time variable, the standard uncertainty had a normal distribution with a confidence level of 95%.\",\"PeriodicalId\":41375,\"journal\":{\"name\":\"3c Tecnologia\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2018-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"3c Tecnologia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17993/3ctecno.2018.v7n2e26.62-81/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"3c Tecnologia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17993/3ctecno.2018.v7n2e26.62-81/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Estimación de la incertidumbre en un prototipo experimental basado en hardware libre para la medición de variables físicas que describen el movimiento de una partícula
The kinematic studies the motion of a particle without considering the effects that produce movement, while the dynamics studies the factors that produce changes in a system. It proposes the establishment of measuring equipment that can record physical parameters focused on the kinematics and dynamics, using the equations deducted from the calculation for the movement, by modifying travel distance, angle of inclination and mass of the objects. The measurement of the time will be used to obtain the uncertainty in the experiments, the dispersion of the available data is related to the size of the sample and the procedure used. In the indirect measurements were used equations due to the correlation in the physical variables for the analysis of uncertainty. One of the methods for uncertainty analysis is based on the statistical analysis, another way to estimate this is through experience or external information available. The experiments made in the inclined plane for the study of the velocity, acceleration and force of friction to angles greater than 15°, showed a relative error of 1.8% in the time variable, the standard uncertainty had a normal distribution with a confidence level of 95%.