{"title":"交替群图的条件强匹配排除","authors":"Mohamad Abdallah, E. Cheng","doi":"10.20429/tag.2019.060205","DOIUrl":null,"url":null,"abstract":"The strong matching preclusion number of a graph is the minimum number of vertices and edges whose deletion results in a graph that has neither perfect matchings nor almost-perfect matchings. Park and Ihm introduced the problem of strong matching preclusion under the condition that no isolated vertex is created as a result of faults. In this paper, we find the conditional strong matching preclusion number for the n-dimensional alternating group graph AGn.","PeriodicalId":37096,"journal":{"name":"Theory and Applications of Graphs","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Conditional Strong Matching Preclusion of the Alternating Group Graph\",\"authors\":\"Mohamad Abdallah, E. Cheng\",\"doi\":\"10.20429/tag.2019.060205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The strong matching preclusion number of a graph is the minimum number of vertices and edges whose deletion results in a graph that has neither perfect matchings nor almost-perfect matchings. Park and Ihm introduced the problem of strong matching preclusion under the condition that no isolated vertex is created as a result of faults. In this paper, we find the conditional strong matching preclusion number for the n-dimensional alternating group graph AGn.\",\"PeriodicalId\":37096,\"journal\":{\"name\":\"Theory and Applications of Graphs\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theory and Applications of Graphs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20429/tag.2019.060205\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory and Applications of Graphs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20429/tag.2019.060205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
Conditional Strong Matching Preclusion of the Alternating Group Graph
The strong matching preclusion number of a graph is the minimum number of vertices and edges whose deletion results in a graph that has neither perfect matchings nor almost-perfect matchings. Park and Ihm introduced the problem of strong matching preclusion under the condition that no isolated vertex is created as a result of faults. In this paper, we find the conditional strong matching preclusion number for the n-dimensional alternating group graph AGn.