Camila Maione, E. Araújo, S. N. Santos-Araujo, A. Boim, R. Barbosa, L. Alleoni
{"title":"用微量元素和土壤特性数据挖掘确定生菜的地理来源","authors":"Camila Maione, E. Araújo, S. N. Santos-Araujo, A. Boim, R. Barbosa, L. Alleoni","doi":"10.1590/1678-992X-2020-0011","DOIUrl":null,"url":null,"abstract":"ABSTRACT Lettuce (Lactuca sativa) is the main leafy vegetable produced in Brazil. Since its production is widespread all over the country, lettuce traceability and quality assurance is hampered. In this study, we propose a new method to identify the geographical origin of Brazilian lettuce. The method uses a powerful data mining technique called support vector machines (SVM) applied to elemental composition and soil properties of samples analyzed. We investigated lettuce produced in Sao Paulo and Pernambuco, two states in the southeastern and northeastern regions in Brazil, respectively. We investigated efficiency of the SVM model by comparing its results with those achieved by traditional linear discriminant analysis (LDA). The SVM models outperformed the LDA models in the two scenarios investigated, achieving an average of 98 % prediction accuracy to discriminate lettuce from both states. A feature evaluation formula, called F–score, was used to measure the discriminative power of the variables analyzed. The soil exchangeable cation capacity, soil contents of low crystalized Al and Zn content in lettuce samples were the most relevant components for differentiation. Our results reinforce the potential of data mining and machine learning techniques to support traceability strategies and authentication of leafy vegetables.","PeriodicalId":49559,"journal":{"name":"Scientia Agricola","volume":"79 1","pages":"1-15"},"PeriodicalIF":2.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Determining the geographical origin of lettuce with data mining applied to micronutrients and soil properties\",\"authors\":\"Camila Maione, E. Araújo, S. N. Santos-Araujo, A. Boim, R. Barbosa, L. Alleoni\",\"doi\":\"10.1590/1678-992X-2020-0011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Lettuce (Lactuca sativa) is the main leafy vegetable produced in Brazil. Since its production is widespread all over the country, lettuce traceability and quality assurance is hampered. In this study, we propose a new method to identify the geographical origin of Brazilian lettuce. The method uses a powerful data mining technique called support vector machines (SVM) applied to elemental composition and soil properties of samples analyzed. We investigated lettuce produced in Sao Paulo and Pernambuco, two states in the southeastern and northeastern regions in Brazil, respectively. We investigated efficiency of the SVM model by comparing its results with those achieved by traditional linear discriminant analysis (LDA). The SVM models outperformed the LDA models in the two scenarios investigated, achieving an average of 98 % prediction accuracy to discriminate lettuce from both states. A feature evaluation formula, called F–score, was used to measure the discriminative power of the variables analyzed. The soil exchangeable cation capacity, soil contents of low crystalized Al and Zn content in lettuce samples were the most relevant components for differentiation. Our results reinforce the potential of data mining and machine learning techniques to support traceability strategies and authentication of leafy vegetables.\",\"PeriodicalId\":49559,\"journal\":{\"name\":\"Scientia Agricola\",\"volume\":\"79 1\",\"pages\":\"1-15\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientia Agricola\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1590/1678-992X-2020-0011\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientia Agricola","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1590/1678-992X-2020-0011","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Determining the geographical origin of lettuce with data mining applied to micronutrients and soil properties
ABSTRACT Lettuce (Lactuca sativa) is the main leafy vegetable produced in Brazil. Since its production is widespread all over the country, lettuce traceability and quality assurance is hampered. In this study, we propose a new method to identify the geographical origin of Brazilian lettuce. The method uses a powerful data mining technique called support vector machines (SVM) applied to elemental composition and soil properties of samples analyzed. We investigated lettuce produced in Sao Paulo and Pernambuco, two states in the southeastern and northeastern regions in Brazil, respectively. We investigated efficiency of the SVM model by comparing its results with those achieved by traditional linear discriminant analysis (LDA). The SVM models outperformed the LDA models in the two scenarios investigated, achieving an average of 98 % prediction accuracy to discriminate lettuce from both states. A feature evaluation formula, called F–score, was used to measure the discriminative power of the variables analyzed. The soil exchangeable cation capacity, soil contents of low crystalized Al and Zn content in lettuce samples were the most relevant components for differentiation. Our results reinforce the potential of data mining and machine learning techniques to support traceability strategies and authentication of leafy vegetables.
期刊介绍:
Scientia Agricola is a journal of the University of São Paulo edited at the Luiz de Queiroz campus in Piracicaba, a city in São Paulo state, southeastern Brazil. Scientia Agricola publishes original articles which contribute to the advancement of the agricultural, environmental and biological sciences.