薄和中厚圆柱壳弯曲分析的二阶模型

IF 1.4 4区 工程技术 Q3 ENGINEERING, CIVIL Latin American Journal of Solids and Structures Pub Date : 2022-01-01 DOI:10.1590/1679-78256843
C. Nwoji, Deval Godwill Ani
{"title":"薄和中厚圆柱壳弯曲分析的二阶模型","authors":"C. Nwoji, Deval Godwill Ani","doi":"10.1590/1679-78256843","DOIUrl":null,"url":null,"abstract":"The suitability of employing the second-order shear deformation theory to static bending problems of thin and moderately thick isotropic circular cylindrical shells was investigated. Two variant forms of the polynomial second-order displacement models were considered. Both models account for quadratic expansions of the surface displacements along the shell thickness, although the second model (SSODM) was augmented by the initial curvature term. The equilibrium equations were derived by use of the principle of virtual work. Navier analytical solutions were obtained under simply supported boundary conditions. The results of the displacements and stresses revealed that the theory formulated on the SSODM provides a good depiction of the bending response of thin and moderately thick shells and are in close agreement with those of the first and higher-order shear deformation theories (FSDT; HSDT). The ability of the theory formulated on the first model (FSODM) to predict adequate values of displacements and stresses in thin shells was found to be significantly affected by changes in length to radius of curvature ( l/a ) ratios","PeriodicalId":18192,"journal":{"name":"Latin American Journal of Solids and Structures","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Second–order models for the bending analysis of thin and moderately thick circular cylindrical shells\",\"authors\":\"C. Nwoji, Deval Godwill Ani\",\"doi\":\"10.1590/1679-78256843\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The suitability of employing the second-order shear deformation theory to static bending problems of thin and moderately thick isotropic circular cylindrical shells was investigated. Two variant forms of the polynomial second-order displacement models were considered. Both models account for quadratic expansions of the surface displacements along the shell thickness, although the second model (SSODM) was augmented by the initial curvature term. The equilibrium equations were derived by use of the principle of virtual work. Navier analytical solutions were obtained under simply supported boundary conditions. The results of the displacements and stresses revealed that the theory formulated on the SSODM provides a good depiction of the bending response of thin and moderately thick shells and are in close agreement with those of the first and higher-order shear deformation theories (FSDT; HSDT). The ability of the theory formulated on the first model (FSODM) to predict adequate values of displacements and stresses in thin shells was found to be significantly affected by changes in length to radius of curvature ( l/a ) ratios\",\"PeriodicalId\":18192,\"journal\":{\"name\":\"Latin American Journal of Solids and Structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Latin American Journal of Solids and Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1590/1679-78256843\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Latin American Journal of Solids and Structures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1590/1679-78256843","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 3
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Second–order models for the bending analysis of thin and moderately thick circular cylindrical shells
The suitability of employing the second-order shear deformation theory to static bending problems of thin and moderately thick isotropic circular cylindrical shells was investigated. Two variant forms of the polynomial second-order displacement models were considered. Both models account for quadratic expansions of the surface displacements along the shell thickness, although the second model (SSODM) was augmented by the initial curvature term. The equilibrium equations were derived by use of the principle of virtual work. Navier analytical solutions were obtained under simply supported boundary conditions. The results of the displacements and stresses revealed that the theory formulated on the SSODM provides a good depiction of the bending response of thin and moderately thick shells and are in close agreement with those of the first and higher-order shear deformation theories (FSDT; HSDT). The ability of the theory formulated on the first model (FSODM) to predict adequate values of displacements and stresses in thin shells was found to be significantly affected by changes in length to radius of curvature ( l/a ) ratios
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
8.30%
发文量
37
审稿时长
>12 weeks
期刊最新文献
Reliability-based design of reinforced concrete pipes to satisfy the TEBT Innovative Approach for Enhancing GLULAM Performance with Reinforcing Steel Bars: A BESO-based Study Sequential method of topological optimization in multi-component systems Coupling Modal Analysis with the BEM for the Transient Response of Bar Structures Interacting with Three-Dimensional Soil Profiles Experimental and Numerical Study on Ballistic Impact Response of Vehicle Tires
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1