循环荷载作用下土工合成包石柱复合地基的数值与理论分析

IF 1.4 4区 工程技术 Q3 ENGINEERING, CIVIL Latin American Journal of Solids and Structures Pub Date : 2022-01-01 DOI:10.1590/1679-78256979
J. Gao, Xuelei Xie, Jiajun Wang, Luo Liu, Wenjie Zhang
{"title":"循环荷载作用下土工合成包石柱复合地基的数值与理论分析","authors":"J. Gao, Xuelei Xie, Jiajun Wang, Luo Liu, Wenjie Zhang","doi":"10.1590/1679-78256979","DOIUrl":null,"url":null,"abstract":"In this paper, a model of the composite foundation reinforced with geosynthetic encased stone columns was established using the discrete element method, and the characteristics of its action under cyclic loading were studied. The influence of the length and radius of the pile on the settlement of the composite foundation is analyzed. The deformation characteristics of the pile and the stress ratio of pile-soil are studied under different pile lengths and radius. Then, based on this, the analysis of the lateral deformation characteristics of the piles under cyclic loading, the calculation model of the geosynthetic encased pile composite foundation is established. The settlement calculation formula of the composite foundation is solved according to the deformation coordination relationship between the pile and soil, the equilibrium condition, and the boundary condition. The results show that the theoretical value is in good agreement with the simulation value, which verifies the rationality of the theoretical calculation formula.","PeriodicalId":18192,"journal":{"name":"Latin American Journal of Solids and Structures","volume":"1 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Numerical and theoretical analysis of geosynthetic encased stone column composite foundation under cyclic loading\",\"authors\":\"J. Gao, Xuelei Xie, Jiajun Wang, Luo Liu, Wenjie Zhang\",\"doi\":\"10.1590/1679-78256979\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a model of the composite foundation reinforced with geosynthetic encased stone columns was established using the discrete element method, and the characteristics of its action under cyclic loading were studied. The influence of the length and radius of the pile on the settlement of the composite foundation is analyzed. The deformation characteristics of the pile and the stress ratio of pile-soil are studied under different pile lengths and radius. Then, based on this, the analysis of the lateral deformation characteristics of the piles under cyclic loading, the calculation model of the geosynthetic encased pile composite foundation is established. The settlement calculation formula of the composite foundation is solved according to the deformation coordination relationship between the pile and soil, the equilibrium condition, and the boundary condition. The results show that the theoretical value is in good agreement with the simulation value, which verifies the rationality of the theoretical calculation formula.\",\"PeriodicalId\":18192,\"journal\":{\"name\":\"Latin American Journal of Solids and Structures\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Latin American Journal of Solids and Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1590/1679-78256979\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Latin American Journal of Solids and Structures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1590/1679-78256979","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 1
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical and theoretical analysis of geosynthetic encased stone column composite foundation under cyclic loading
In this paper, a model of the composite foundation reinforced with geosynthetic encased stone columns was established using the discrete element method, and the characteristics of its action under cyclic loading were studied. The influence of the length and radius of the pile on the settlement of the composite foundation is analyzed. The deformation characteristics of the pile and the stress ratio of pile-soil are studied under different pile lengths and radius. Then, based on this, the analysis of the lateral deformation characteristics of the piles under cyclic loading, the calculation model of the geosynthetic encased pile composite foundation is established. The settlement calculation formula of the composite foundation is solved according to the deformation coordination relationship between the pile and soil, the equilibrium condition, and the boundary condition. The results show that the theoretical value is in good agreement with the simulation value, which verifies the rationality of the theoretical calculation formula.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
8.30%
发文量
37
审稿时长
>12 weeks
期刊最新文献
Reliability-based design of reinforced concrete pipes to satisfy the TEBT Innovative Approach for Enhancing GLULAM Performance with Reinforcing Steel Bars: A BESO-based Study Sequential method of topological optimization in multi-component systems Coupling Modal Analysis with the BEM for the Transient Response of Bar Structures Interacting with Three-Dimensional Soil Profiles Experimental and Numerical Study on Ballistic Impact Response of Vehicle Tires
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1