薄角膜交联:从起源到最新进展

F. Hafezi, M. Hillen, L. Kollros, Nikki L. Hafezi, E. A. Torres-Netto
{"title":"薄角膜交联:从起源到最新进展","authors":"F. Hafezi, M. Hillen, L. Kollros, Nikki L. Hafezi, E. A. Torres-Netto","doi":"10.17925/usor.2022.16.1.13","DOIUrl":null,"url":null,"abstract":"Corneal cross-linking (CXL) can halt ectasia progression and involves saturating the stroma with riboflavin, followed by ultraviolet-A (UV-A) light irradiation. This generates reactive oxygen species that covalently cross-link together stromal molecules, strengthening the cornea. The ‘Dresden protocol’ left a 70 µm uncross-linked region at the base of the stroma to protect the corneal endothelium from UV damage; however, this limited CXL to corneas ≥400 µm. Approaches made to overcome this limitation involved artificial corneal thickening to ≥400 μm through swelling the stroma with hypo-osmolaric riboflavin, applying riboflavin-soaked contact lenses during UV irradiation or leaving ‘epithelial islands’ over the thinnest corneal regions. The drawbacks to these three approaches are unpredictable swelling, suboptimal stiffening and unpredictable cross-linking effects, respectively. Newer approaches adapt the irradiation protocol to the cornea to deliver CXL that maintains the 70 μm uncross-linked stroma safety margin. The sub400 protocol employs an algorithm that models the interactions between UV-A energy, riboflavin, oxygen diffusion and stromal thickness. It requires only corneal pachymetry measurements at the thinnest point and the selection of the appropriate UV irradiation time from a look-up table to cross-link corneas as thin as 200 µm safely and effectively.","PeriodicalId":90077,"journal":{"name":"US ophthalmic review","volume":"77 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Corneal Cross-linking in Thin Corneas: From Origins to State of the Art\",\"authors\":\"F. Hafezi, M. Hillen, L. Kollros, Nikki L. Hafezi, E. A. Torres-Netto\",\"doi\":\"10.17925/usor.2022.16.1.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Corneal cross-linking (CXL) can halt ectasia progression and involves saturating the stroma with riboflavin, followed by ultraviolet-A (UV-A) light irradiation. This generates reactive oxygen species that covalently cross-link together stromal molecules, strengthening the cornea. The ‘Dresden protocol’ left a 70 µm uncross-linked region at the base of the stroma to protect the corneal endothelium from UV damage; however, this limited CXL to corneas ≥400 µm. Approaches made to overcome this limitation involved artificial corneal thickening to ≥400 μm through swelling the stroma with hypo-osmolaric riboflavin, applying riboflavin-soaked contact lenses during UV irradiation or leaving ‘epithelial islands’ over the thinnest corneal regions. The drawbacks to these three approaches are unpredictable swelling, suboptimal stiffening and unpredictable cross-linking effects, respectively. Newer approaches adapt the irradiation protocol to the cornea to deliver CXL that maintains the 70 μm uncross-linked stroma safety margin. The sub400 protocol employs an algorithm that models the interactions between UV-A energy, riboflavin, oxygen diffusion and stromal thickness. It requires only corneal pachymetry measurements at the thinnest point and the selection of the appropriate UV irradiation time from a look-up table to cross-link corneas as thin as 200 µm safely and effectively.\",\"PeriodicalId\":90077,\"journal\":{\"name\":\"US ophthalmic review\",\"volume\":\"77 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"US ophthalmic review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17925/usor.2022.16.1.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"US ophthalmic review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17925/usor.2022.16.1.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

角膜交联(CXL)可以阻止扩张进展,并涉及核黄素饱和基质,然后紫外线照射(UV-A)。这就产生了活性氧,它们以共价交联的方式将基质分子连接在一起,从而增强了角膜。“德累斯顿方案”在基质底部留下一个70µm的非交联区域,以保护角膜内皮免受紫外线损伤;然而,这将CXL限制在≥400µm的角膜。克服这一限制的方法包括人工角膜增厚至≥400 μm,通过用低渗透性核黄素肿胀基质,在紫外线照射期间使用核黄素浸泡的隐形眼镜,或在最薄的角膜区域留下“上皮岛”。这三种方法的缺点分别是不可预测的膨胀、次优的硬化和不可预测的交联效果。更新的方法将照射方案应用于角膜,以提供维持70 μm非交联基质安全范围的CXL。sub400方案采用一种算法,模拟UV-A能量、核黄素、氧扩散和基质厚度之间的相互作用。它只需要在最薄点进行角膜厚度测量,并从查找表中选择合适的紫外线照射时间,就可以安全有效地交联薄至200µm的角膜。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Corneal Cross-linking in Thin Corneas: From Origins to State of the Art
Corneal cross-linking (CXL) can halt ectasia progression and involves saturating the stroma with riboflavin, followed by ultraviolet-A (UV-A) light irradiation. This generates reactive oxygen species that covalently cross-link together stromal molecules, strengthening the cornea. The ‘Dresden protocol’ left a 70 µm uncross-linked region at the base of the stroma to protect the corneal endothelium from UV damage; however, this limited CXL to corneas ≥400 µm. Approaches made to overcome this limitation involved artificial corneal thickening to ≥400 μm through swelling the stroma with hypo-osmolaric riboflavin, applying riboflavin-soaked contact lenses during UV irradiation or leaving ‘epithelial islands’ over the thinnest corneal regions. The drawbacks to these three approaches are unpredictable swelling, suboptimal stiffening and unpredictable cross-linking effects, respectively. Newer approaches adapt the irradiation protocol to the cornea to deliver CXL that maintains the 70 μm uncross-linked stroma safety margin. The sub400 protocol employs an algorithm that models the interactions between UV-A energy, riboflavin, oxygen diffusion and stromal thickness. It requires only corneal pachymetry measurements at the thinnest point and the selection of the appropriate UV irradiation time from a look-up table to cross-link corneas as thin as 200 µm safely and effectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
New and Emerging Trabecular Meshwork Bypass Stents Current and Emerging Therapies for Leber Hereditary Optic Neuropathy Safety and Efficacy of Suprachorodial Injection of Triamcinolone Acetonide: Review of a Novel Treatment Neurotrophic Keratitis: Exploring the Therapeutic Landscape iDose TR Sustained-release Travoprost Implant for the Treatment of Glaucoma
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1