过冷、流体生产力和SAGD生产者以上的液位

J. Yuan, Daniel Nugent
{"title":"过冷、流体生产力和SAGD生产者以上的液位","authors":"J. Yuan, Daniel Nugent","doi":"10.2118/157899-PA","DOIUrl":null,"url":null,"abstract":"Thermodynamic steam-trap control, or subcool control, in a typical steam-assisted gravity-drainage (SAGD) production is essential to the stability and longevity of the operation. It is achieved commonly through the control of fluid production. The goal of such control is to maintain a steady and healthy liquid production without allowing steam from the injector to bypass to the producer. Therefore, it is effectively a control of the liquid level above the producer. Unfortunately, it is not practical to monitor this liquid level. A rule-of-thumb subcool-per-metre estimation of 10°C/m of liquid level is popular in the industry; however it does not prove to hold in many situations. This paper presents a study of the dynamics of SAGD-production control with a resulting algebraic equation that relates subcool, fluid productivity, and wellbore drawdown to the liquid level above a producer. The main conclusions of this study include • There is no minimum subcool value for a pure-gravity-drainage scenario; however, as the wellbore drawdown is considered, there is a minimum subcool value in order to maintain the stability of fluid flow. • For a given productivity, the liquid level increases as subcool increases or as wellbore drawdown decreases. • For each given set of operating parameters, there exists a critical productivity below which SAGD operation would halt. • Before the steam chamber reaches the top of the reservoir, the fluid productivity is limited by the vertical distance between the injector and the producer; the larger the distance, the higher the fluid-production rate can be. A verification of this analysis was conducted by a series of numerical reservoir simulations. Although limited to two dimensions, we expect that this analysis captures the main physics amid the dynamic complexity of SAGD-production control. The resulting algebraic equation can be used for better understanding of the dynamics of subcool control and for determining operation strategies.","PeriodicalId":15181,"journal":{"name":"Journal of Canadian Petroleum Technology","volume":"52 1","pages":"360-367"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2118/157899-PA","citationCount":"18","resultStr":"{\"title\":\"Subcool, Fluid Productivity, and Liquid Level Above a SAGD Producer\",\"authors\":\"J. Yuan, Daniel Nugent\",\"doi\":\"10.2118/157899-PA\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thermodynamic steam-trap control, or subcool control, in a typical steam-assisted gravity-drainage (SAGD) production is essential to the stability and longevity of the operation. It is achieved commonly through the control of fluid production. The goal of such control is to maintain a steady and healthy liquid production without allowing steam from the injector to bypass to the producer. Therefore, it is effectively a control of the liquid level above the producer. Unfortunately, it is not practical to monitor this liquid level. A rule-of-thumb subcool-per-metre estimation of 10°C/m of liquid level is popular in the industry; however it does not prove to hold in many situations. This paper presents a study of the dynamics of SAGD-production control with a resulting algebraic equation that relates subcool, fluid productivity, and wellbore drawdown to the liquid level above a producer. The main conclusions of this study include • There is no minimum subcool value for a pure-gravity-drainage scenario; however, as the wellbore drawdown is considered, there is a minimum subcool value in order to maintain the stability of fluid flow. • For a given productivity, the liquid level increases as subcool increases or as wellbore drawdown decreases. • For each given set of operating parameters, there exists a critical productivity below which SAGD operation would halt. • Before the steam chamber reaches the top of the reservoir, the fluid productivity is limited by the vertical distance between the injector and the producer; the larger the distance, the higher the fluid-production rate can be. A verification of this analysis was conducted by a series of numerical reservoir simulations. Although limited to two dimensions, we expect that this analysis captures the main physics amid the dynamic complexity of SAGD-production control. The resulting algebraic equation can be used for better understanding of the dynamics of subcool control and for determining operation strategies.\",\"PeriodicalId\":15181,\"journal\":{\"name\":\"Journal of Canadian Petroleum Technology\",\"volume\":\"52 1\",\"pages\":\"360-367\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2118/157899-PA\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Canadian Petroleum Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/157899-PA\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Canadian Petroleum Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/157899-PA","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

在典型的蒸汽辅助重力排水(SAGD)生产中,热力蒸汽疏水阀控制或过冷控制对作业的稳定性和寿命至关重要。通常通过控制流体产量来实现。这种控制的目标是保持稳定和健康的产液,而不允许蒸汽从注入器旁路到生产者。因此,它有效地控制了生产者以上的液位。不幸的是,监测这个液位是不实际的。10°C/m的液位的每米过冷度估计的经验法则在工业中很流行;然而,它在许多情况下并不成立。本文对sagd生产控制动力学进行了研究,并得出了一个代数方程,该方程将过冷度、流体产能和井筒降与生产商上方的液位联系起来。本研究的主要结论包括:•在纯重力排水的情况下,没有最小过冷值;然而,考虑到井筒压降,为了保持流体流动的稳定性,存在一个最小过冷值。对于给定的产能,随着过冷度的增加或井筒压降的减小,液面会增加。•对于每一组给定的作业参数,存在一个临界产能,低于该产能,SAGD作业将停止。在蒸汽室到达储层顶部之前,流体产能受到注入器和采油器之间垂直距离的限制;距离越大,产液率越高。通过一系列油藏数值模拟验证了这一分析。虽然限于两个维度,但我们希望该分析能够捕捉sagd生产控制动态复杂性中的主要物理特性。所得到的代数方程可用于更好地理解过冷控制动力学和确定操作策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Subcool, Fluid Productivity, and Liquid Level Above a SAGD Producer
Thermodynamic steam-trap control, or subcool control, in a typical steam-assisted gravity-drainage (SAGD) production is essential to the stability and longevity of the operation. It is achieved commonly through the control of fluid production. The goal of such control is to maintain a steady and healthy liquid production without allowing steam from the injector to bypass to the producer. Therefore, it is effectively a control of the liquid level above the producer. Unfortunately, it is not practical to monitor this liquid level. A rule-of-thumb subcool-per-metre estimation of 10°C/m of liquid level is popular in the industry; however it does not prove to hold in many situations. This paper presents a study of the dynamics of SAGD-production control with a resulting algebraic equation that relates subcool, fluid productivity, and wellbore drawdown to the liquid level above a producer. The main conclusions of this study include • There is no minimum subcool value for a pure-gravity-drainage scenario; however, as the wellbore drawdown is considered, there is a minimum subcool value in order to maintain the stability of fluid flow. • For a given productivity, the liquid level increases as subcool increases or as wellbore drawdown decreases. • For each given set of operating parameters, there exists a critical productivity below which SAGD operation would halt. • Before the steam chamber reaches the top of the reservoir, the fluid productivity is limited by the vertical distance between the injector and the producer; the larger the distance, the higher the fluid-production rate can be. A verification of this analysis was conducted by a series of numerical reservoir simulations. Although limited to two dimensions, we expect that this analysis captures the main physics amid the dynamic complexity of SAGD-production control. The resulting algebraic equation can be used for better understanding of the dynamics of subcool control and for determining operation strategies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Canadian Petroleum Technology
Journal of Canadian Petroleum Technology 工程技术-工程:化工
自引率
0.00%
发文量
0
审稿时长
11.4 months
期刊最新文献
Field-Scale Deformation Analysis of Cyclic Solvent Stimulation in Thin Unconsolidated Heavy-Oil Reservoirs With Developed Wormhole Network Investigating the Effect of Improved Fracture Conductivity on Production Performance of Hydraulically Fractured Wells: Field-Case Studies and Numerical Simulations SAGD Well-Pair Completion Optimization Using Scab Liner and Steam Splitters Reservoir Characterization and History Matching of the Horn River Shale: An Integrated Geoscience and Reservoir-Simulation Approach The Effect of Clay Type on Steam-Assisted-Gravity-Drainage Performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1