利用磁隧道结中的涡流和预专业振荡实现逻辑中的记忆和通信

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2022-11-24 DOI:10.1109/LMAG.2022.3224676
Sonal Shreya;Milad Zamani;Yaseer Rezaeiyan;Hamdam Ghanatian;Tim Böhnert;Alex S. Jenkins;Ricardo Ferreira;Hooman Farkhani;Farshad Moradi
{"title":"利用磁隧道结中的涡流和预专业振荡实现逻辑中的记忆和通信","authors":"Sonal Shreya;Milad Zamani;Yaseer Rezaeiyan;Hamdam Ghanatian;Tim Böhnert;Alex S. Jenkins;Ricardo Ferreira;Hooman Farkhani;Farshad Moradi","doi":"10.1109/LMAG.2022.3224676","DOIUrl":null,"url":null,"abstract":"Wearable and implantable devices (WIDs) come with several separate blocks such as preprocessing units, memory, and data transmission blocks. Hence, in this letter, we present the concept of memory and communication-in-logic (MCL) using a magnetic tunnel junction (MTJ). Here, MTJ is presented as a memory device as well as an oscillator for communication purposes. Vortex-based spin-torque nanooscillators (V-STNO) and precessional STNOs (P-STNO) generate a microwave frequency range (a few hundred MHz to a few GHz) wherein the frequency readout technique using the spin-torque diode is implemented for memory read function. In this work, a 300 nm nanodisk V-STNO generates 296 and 312 MHz frequency for two states of chirality (a characteristic of magnetic vortex), respectively. These different frequencies can be sensed for a bit “0”/ “1” read out through which the data from WIDs can be transmitted in a more energy- and area-efficient way. The output power emission is 3.22 and 1.76 µW for bit “1” and “0,” respectively, for V-STNO, which is three orders of magnitude larger than that of P-STNO. Finally, we demonstrate that V-STNO can transmit data up to 10 m in the air medium, which is much longer than P-STNO (0.24 m).","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Memory and Communication-in-Logic Using Vortex and Precessional Oscillations in a Magnetic Tunnel Junction\",\"authors\":\"Sonal Shreya;Milad Zamani;Yaseer Rezaeiyan;Hamdam Ghanatian;Tim Böhnert;Alex S. Jenkins;Ricardo Ferreira;Hooman Farkhani;Farshad Moradi\",\"doi\":\"10.1109/LMAG.2022.3224676\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wearable and implantable devices (WIDs) come with several separate blocks such as preprocessing units, memory, and data transmission blocks. Hence, in this letter, we present the concept of memory and communication-in-logic (MCL) using a magnetic tunnel junction (MTJ). Here, MTJ is presented as a memory device as well as an oscillator for communication purposes. Vortex-based spin-torque nanooscillators (V-STNO) and precessional STNOs (P-STNO) generate a microwave frequency range (a few hundred MHz to a few GHz) wherein the frequency readout technique using the spin-torque diode is implemented for memory read function. In this work, a 300 nm nanodisk V-STNO generates 296 and 312 MHz frequency for two states of chirality (a characteristic of magnetic vortex), respectively. These different frequencies can be sensed for a bit “0”/ “1” read out through which the data from WIDs can be transmitted in a more energy- and area-efficient way. The output power emission is 3.22 and 1.76 µW for bit “1” and “0,” respectively, for V-STNO, which is three orders of magnitude larger than that of P-STNO. Finally, we demonstrate that V-STNO can transmit data up to 10 m in the air medium, which is much longer than P-STNO (0.24 m).\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9963571/\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/9963571/","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

摘要

可穿戴和植入式设备(WID)有几个单独的块,如预处理单元、存储器和数据传输块。因此,在这封信中,我们提出了使用磁性隧道结(MTJ)的逻辑中的存储器和通信(MCL)的概念。这里,MTJ被呈现为用于通信目的的存储器设备以及振荡器。基于涡流的自旋力矩纳米振荡器(V-STNO)和进动STNO(P-STNO)产生微波频率范围(几百MHz到几GHz),其中使用自旋力矩二极管的频率读出技术被实现用于存储器读取功能。在这项工作中,300nm纳米盘V-STNO分别为两种手性状态(磁涡旋的特征)产生296和312MHz的频率。这些不同的频率可以被读出一个位“0”/“1”来感测,通过该位可以以更节能和更有效的方式传输来自WID的数据。对于V-STNO,位“1”和“0”的输出功率发射分别为3.22和1.76µW,比P-STNO大三个数量级。最后,我们证明了V-STNO可以在空气介质中传输长达10米的数据,这比P-STNO(0.24米)长得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Memory and Communication-in-Logic Using Vortex and Precessional Oscillations in a Magnetic Tunnel Junction
Wearable and implantable devices (WIDs) come with several separate blocks such as preprocessing units, memory, and data transmission blocks. Hence, in this letter, we present the concept of memory and communication-in-logic (MCL) using a magnetic tunnel junction (MTJ). Here, MTJ is presented as a memory device as well as an oscillator for communication purposes. Vortex-based spin-torque nanooscillators (V-STNO) and precessional STNOs (P-STNO) generate a microwave frequency range (a few hundred MHz to a few GHz) wherein the frequency readout technique using the spin-torque diode is implemented for memory read function. In this work, a 300 nm nanodisk V-STNO generates 296 and 312 MHz frequency for two states of chirality (a characteristic of magnetic vortex), respectively. These different frequencies can be sensed for a bit “0”/ “1” read out through which the data from WIDs can be transmitted in a more energy- and area-efficient way. The output power emission is 3.22 and 1.76 µW for bit “1” and “0,” respectively, for V-STNO, which is three orders of magnitude larger than that of P-STNO. Finally, we demonstrate that V-STNO can transmit data up to 10 m in the air medium, which is much longer than P-STNO (0.24 m).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Mentorship in academic musculoskeletal radiology: perspectives from a junior faculty member. Underlying synovial sarcoma undiagnosed for more than 20 years in a patient with regional pain: a case report. Sacrococcygeal chordoma with spontaneous regression due to a large hemorrhagic component. Associations of cumulative voriconazole dose, treatment duration, and alkaline phosphatase with voriconazole-induced periostitis. Can the presence of SLAP-5 lesions be predicted by using the critical shoulder angle in traumatic anterior shoulder instability?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1