Swertiamarin通过NOX4介导的氧化还原和线粒体功能调节减轻百草枯诱导的肺上皮样细胞凋亡

IF 0.6 4区 医学 Q4 PHARMACOLOGY & PHARMACY Brazilian Journal of Pharmaceutical Sciences Pub Date : 2023-08-28 DOI:10.1590/s2175-97902023e22476
Ji Wu, Yong Li, Xinju Li, Tao Wu
{"title":"Swertiamarin通过NOX4介导的氧化还原和线粒体功能调节减轻百草枯诱导的肺上皮样细胞凋亡","authors":"Ji Wu, Yong Li, Xinju Li, Tao Wu","doi":"10.1590/s2175-97902023e22476","DOIUrl":null,"url":null,"abstract":"The aim of the present study was to investigate the effect of swertiamarin (STM) in attenuating paraquat (PQ)-induced human lung alveolar epithelial-like cell (A549) apoptosis and the underlying mechanisms. A549 cells were pretreated with different concentrations of STM for 2 hr and then cultured with or without PQ (700 μM) for 24 hr. Cell survival was determined using the CCK8 assay. Morphological changes, MDA content, inflammatory factors, fibrogenesis parameters, apoptosis rates, redox status and mitochondrial membrane potential (MMP) were evaluated. The expression of several genes involved in the modulation of redox status was measured by Western blotting. Cell viability and MMP were decreased, but the apoptosis rate and DCFH oxidation were elevated by PQ exposure. STM pretreatment notably increased cell viability and MMP and reduced the apoptosis rate and DCFH oxidation. Furthermore, TLR4-NOX4 signaling was significantly inhibited by STM. The downregulation of NOX4 by siRNA exerted the same protective effects as STM. This study provides the first evidence that STM attenuates PQ-induced pulmonary epithelial-like cell apoptosis via NOX4-mediated regulation of redox and mitochondrial function.","PeriodicalId":9218,"journal":{"name":"Brazilian Journal of Pharmaceutical Sciences","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Swertiamarin attenuates paraquat-induced pulmonary epithelial-like cell apoptosis via NOX4-mediated regulation of redox and mitochondrial function\",\"authors\":\"Ji Wu, Yong Li, Xinju Li, Tao Wu\",\"doi\":\"10.1590/s2175-97902023e22476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of the present study was to investigate the effect of swertiamarin (STM) in attenuating paraquat (PQ)-induced human lung alveolar epithelial-like cell (A549) apoptosis and the underlying mechanisms. A549 cells were pretreated with different concentrations of STM for 2 hr and then cultured with or without PQ (700 μM) for 24 hr. Cell survival was determined using the CCK8 assay. Morphological changes, MDA content, inflammatory factors, fibrogenesis parameters, apoptosis rates, redox status and mitochondrial membrane potential (MMP) were evaluated. The expression of several genes involved in the modulation of redox status was measured by Western blotting. Cell viability and MMP were decreased, but the apoptosis rate and DCFH oxidation were elevated by PQ exposure. STM pretreatment notably increased cell viability and MMP and reduced the apoptosis rate and DCFH oxidation. Furthermore, TLR4-NOX4 signaling was significantly inhibited by STM. The downregulation of NOX4 by siRNA exerted the same protective effects as STM. This study provides the first evidence that STM attenuates PQ-induced pulmonary epithelial-like cell apoptosis via NOX4-mediated regulation of redox and mitochondrial function.\",\"PeriodicalId\":9218,\"journal\":{\"name\":\"Brazilian Journal of Pharmaceutical Sciences\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brazilian Journal of Pharmaceutical Sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1590/s2175-97902023e22476\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Journal of Pharmaceutical Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1590/s2175-97902023e22476","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Swertiamarin attenuates paraquat-induced pulmonary epithelial-like cell apoptosis via NOX4-mediated regulation of redox and mitochondrial function
The aim of the present study was to investigate the effect of swertiamarin (STM) in attenuating paraquat (PQ)-induced human lung alveolar epithelial-like cell (A549) apoptosis and the underlying mechanisms. A549 cells were pretreated with different concentrations of STM for 2 hr and then cultured with or without PQ (700 μM) for 24 hr. Cell survival was determined using the CCK8 assay. Morphological changes, MDA content, inflammatory factors, fibrogenesis parameters, apoptosis rates, redox status and mitochondrial membrane potential (MMP) were evaluated. The expression of several genes involved in the modulation of redox status was measured by Western blotting. Cell viability and MMP were decreased, but the apoptosis rate and DCFH oxidation were elevated by PQ exposure. STM pretreatment notably increased cell viability and MMP and reduced the apoptosis rate and DCFH oxidation. Furthermore, TLR4-NOX4 signaling was significantly inhibited by STM. The downregulation of NOX4 by siRNA exerted the same protective effects as STM. This study provides the first evidence that STM attenuates PQ-induced pulmonary epithelial-like cell apoptosis via NOX4-mediated regulation of redox and mitochondrial function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
165
审稿时长
7.5 months
期刊介绍: The Brazilian Journal of Pharmaceutical Sciences accepts for publication Original Papers applicable to the fields of Pharmaceutical Sciences; Reviews and Current Comment Articles, which are published under the Scientific Editor and Associate Editors invitation to recognized experts or when they are spontaneously submitted by the authors in the form of abstracts to have their importance evaluated. A critical view of the subject with insertions of results of previous works in the field in relation to the state of art must be included; Short Communications reporting new methods and previews of works on researches of outstanding importance in which originality justify a quick publication. A maximum of 2000 words excluding tables, figures and references is an acceptable limit. One table, one figure and ten references may be added, and Book Reviews of the latest editions of books, prepared by specialists invited by the Scientific Editor and Associate Editors. Thematic Supplements as well as those related to scientific meetings can be published under the Scientific Editor and/or Associate Editors agreement.
期刊最新文献
Protective Role of Vitamin D Against Development of Active Tuberculosis in Close Household Contacts of Pulmonary Tuberculosis Patients: A Prospective Cohort Study. Compound Danshen Dripping Pills pretreatment protects the heart from ischemia/reperfusion injury by enhancing autophagic flux Role of Brain Angiotensin-II in Development of Experimental Diabetic Nephropathy in Wistar Rats Egr-1 Enhances Drug Resistance of Breast Cancer Cells by MDR1 Dependence Authentication of Brazilian Ginseng using Bar-HRM analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1