{"title":"超高效液相色谱-串联质谱法研究曲美他嗪的代谢","authors":"K. Chomaničová, Élida Alechaga Silva, R. Alemany","doi":"10.1590/s2175-97902023e22453","DOIUrl":null,"url":null,"abstract":"In the present study, the application of ultra-high performance liquid chromatography-tandem mass spectrometry allowed us to study of known—as well as hitherto unknown— trimetazidine (TMZ) metabolites in human urine and to propose their renal excretion profiles. Urine samples from a healthy volunteer were analyzed at baseline and at 0–4 h, 4–8 h, 8–12 h, and 12–24 h after a single dose of TMZ. A dilute-and-shoot procedure was used as sample treatment before separation. Full-scan spectra of possible metabolites were acquired. Additionally, product ion scan spectra of precursor ions of interest were also acquired at two collision energies. Intact TMZ was a major excretion product, with a maximum concentration at 4-8 h after administration. Moreover, five minor metabolites were observed, namely trimetazidine-N-oxide (M1), N-formyl trimetazidine (M2), desmethyl-trimetazidine O-sulfate (M3), desmethyl-trimetazidine O-glucuronide (M4), and desmethyl-trimetazidine-N-oxide-O-glucuronide (M5). Metabolite M5 has not previously been reported. Excretion curves were constructed based on the chromatographic peak areas of specific mass transitions (precursor ion > product ion) related to each of the detected metabolites.","PeriodicalId":9218,"journal":{"name":"Brazilian Journal of Pharmaceutical Sciences","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metabolic study of trimetazidine using ultra-high performance liquid chromatography-tandem mass spectrometry\",\"authors\":\"K. Chomaničová, Élida Alechaga Silva, R. Alemany\",\"doi\":\"10.1590/s2175-97902023e22453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present study, the application of ultra-high performance liquid chromatography-tandem mass spectrometry allowed us to study of known—as well as hitherto unknown— trimetazidine (TMZ) metabolites in human urine and to propose their renal excretion profiles. Urine samples from a healthy volunteer were analyzed at baseline and at 0–4 h, 4–8 h, 8–12 h, and 12–24 h after a single dose of TMZ. A dilute-and-shoot procedure was used as sample treatment before separation. Full-scan spectra of possible metabolites were acquired. Additionally, product ion scan spectra of precursor ions of interest were also acquired at two collision energies. Intact TMZ was a major excretion product, with a maximum concentration at 4-8 h after administration. Moreover, five minor metabolites were observed, namely trimetazidine-N-oxide (M1), N-formyl trimetazidine (M2), desmethyl-trimetazidine O-sulfate (M3), desmethyl-trimetazidine O-glucuronide (M4), and desmethyl-trimetazidine-N-oxide-O-glucuronide (M5). Metabolite M5 has not previously been reported. Excretion curves were constructed based on the chromatographic peak areas of specific mass transitions (precursor ion > product ion) related to each of the detected metabolites.\",\"PeriodicalId\":9218,\"journal\":{\"name\":\"Brazilian Journal of Pharmaceutical Sciences\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brazilian Journal of Pharmaceutical Sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1590/s2175-97902023e22453\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Journal of Pharmaceutical Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1590/s2175-97902023e22453","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Metabolic study of trimetazidine using ultra-high performance liquid chromatography-tandem mass spectrometry
In the present study, the application of ultra-high performance liquid chromatography-tandem mass spectrometry allowed us to study of known—as well as hitherto unknown— trimetazidine (TMZ) metabolites in human urine and to propose their renal excretion profiles. Urine samples from a healthy volunteer were analyzed at baseline and at 0–4 h, 4–8 h, 8–12 h, and 12–24 h after a single dose of TMZ. A dilute-and-shoot procedure was used as sample treatment before separation. Full-scan spectra of possible metabolites were acquired. Additionally, product ion scan spectra of precursor ions of interest were also acquired at two collision energies. Intact TMZ was a major excretion product, with a maximum concentration at 4-8 h after administration. Moreover, five minor metabolites were observed, namely trimetazidine-N-oxide (M1), N-formyl trimetazidine (M2), desmethyl-trimetazidine O-sulfate (M3), desmethyl-trimetazidine O-glucuronide (M4), and desmethyl-trimetazidine-N-oxide-O-glucuronide (M5). Metabolite M5 has not previously been reported. Excretion curves were constructed based on the chromatographic peak areas of specific mass transitions (precursor ion > product ion) related to each of the detected metabolites.
期刊介绍:
The Brazilian Journal of Pharmaceutical Sciences accepts for publication Original Papers applicable to the fields of Pharmaceutical Sciences; Reviews and Current Comment Articles, which are published under the Scientific Editor and Associate Editors invitation to recognized experts or when they are spontaneously submitted by the authors in the form of abstracts to have their importance evaluated. A critical view of the subject with insertions of results of previous works in the field in relation to the state of art must be included; Short Communications reporting new methods and previews of works on researches of outstanding importance in which originality justify a quick publication. A maximum of 2000 words excluding tables, figures and references is an acceptable limit. One table, one figure and ten references may be added, and Book Reviews of the latest editions of books, prepared by specialists invited by the Scientific Editor and Associate Editors. Thematic Supplements as well as those related to scientific meetings can be published under the Scientific Editor and/or Associate Editors agreement.