{"title":"质量平衡EH-pH图的应用ⅰ-吉布斯相律的应用","authors":"R. N. Gow, H. Huang, C. Young","doi":"10.19150/MMP.6622","DOIUrl":null,"url":null,"abstract":"EH-pH diagrams are useful tools in understanding how mineral surfaces react in solution and particularly how aqueous conditions can be changed to enhance mineral leaching processes. Successful application of these diagrams, however, requires that several considerations be kept in mind to prevent what had been termed as “gross errors” in their calculation and use. In this paper, the aqueous Cu-S system is used as the basis for explaining the mass-balanced method of calculating EH-pH diagrams with the STABCAL thermodynamic equilibrium software. A breakdown of the Gibbs’ Phase Rule and how it is used in STABCAL to modify the diagrams is included. The methodology was applied to the aqueous Cu-As-S system, and resulting diagrams were compared against examples of those generated using the predominant-ion method. The complexity of such diagrams increases with every additional component, and competition between species becomes more apparent, as can be seen by curvature in the resulting mass-balanced diagrams. The complete diagram for enargite (Cu3AsS4) is shown. It compares well with spectroelectrochemical measurements from Raman spectroscopy and cyclic voltammetry studies.","PeriodicalId":18536,"journal":{"name":"Minerals & Metallurgical Processing","volume":"33 1","pages":"58-67"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.19150/MMP.6622","citationCount":"8","resultStr":"{\"title\":\"Utility of mass-balanced EH-pH diagrams I — Applications of Gibbs’ Phase Rule\",\"authors\":\"R. N. Gow, H. Huang, C. Young\",\"doi\":\"10.19150/MMP.6622\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"EH-pH diagrams are useful tools in understanding how mineral surfaces react in solution and particularly how aqueous conditions can be changed to enhance mineral leaching processes. Successful application of these diagrams, however, requires that several considerations be kept in mind to prevent what had been termed as “gross errors” in their calculation and use. In this paper, the aqueous Cu-S system is used as the basis for explaining the mass-balanced method of calculating EH-pH diagrams with the STABCAL thermodynamic equilibrium software. A breakdown of the Gibbs’ Phase Rule and how it is used in STABCAL to modify the diagrams is included. The methodology was applied to the aqueous Cu-As-S system, and resulting diagrams were compared against examples of those generated using the predominant-ion method. The complexity of such diagrams increases with every additional component, and competition between species becomes more apparent, as can be seen by curvature in the resulting mass-balanced diagrams. The complete diagram for enargite (Cu3AsS4) is shown. It compares well with spectroelectrochemical measurements from Raman spectroscopy and cyclic voltammetry studies.\",\"PeriodicalId\":18536,\"journal\":{\"name\":\"Minerals & Metallurgical Processing\",\"volume\":\"33 1\",\"pages\":\"58-67\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.19150/MMP.6622\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Minerals & Metallurgical Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.19150/MMP.6622\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Minerals & Metallurgical Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19150/MMP.6622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
Utility of mass-balanced EH-pH diagrams I — Applications of Gibbs’ Phase Rule
EH-pH diagrams are useful tools in understanding how mineral surfaces react in solution and particularly how aqueous conditions can be changed to enhance mineral leaching processes. Successful application of these diagrams, however, requires that several considerations be kept in mind to prevent what had been termed as “gross errors” in their calculation and use. In this paper, the aqueous Cu-S system is used as the basis for explaining the mass-balanced method of calculating EH-pH diagrams with the STABCAL thermodynamic equilibrium software. A breakdown of the Gibbs’ Phase Rule and how it is used in STABCAL to modify the diagrams is included. The methodology was applied to the aqueous Cu-As-S system, and resulting diagrams were compared against examples of those generated using the predominant-ion method. The complexity of such diagrams increases with every additional component, and competition between species becomes more apparent, as can be seen by curvature in the resulting mass-balanced diagrams. The complete diagram for enargite (Cu3AsS4) is shown. It compares well with spectroelectrochemical measurements from Raman spectroscopy and cyclic voltammetry studies.
期刊介绍:
For over twenty-five years, M&MP has been your source for the newest thinking in the processing of minerals and metals. We cover the latest developments in a wide range of applicable disciplines, from metallurgy to computer science to environmental engineering. Our authors, experts from industry, academia and the government, present state-of-the-art research from around the globe.