羰基钴热裂解制备六角紧密堆积钴纳米粒子

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2023-09-18 DOI:10.1109/LMAG.2023.3316608
Kyohei Takahashi;Hiroshi Ito;Isao Kanada;Hiroyuki Matsumoto
{"title":"羰基钴热裂解制备六角紧密堆积钴纳米粒子","authors":"Kyohei Takahashi;Hiroshi Ito;Isao Kanada;Hiroyuki Matsumoto","doi":"10.1109/LMAG.2023.3316608","DOIUrl":null,"url":null,"abstract":"Magnetic materials with low magnetic loss are required to realize both a high-frequency support and a miniaturization of radio frequency components. Hexagonal close-packed cobalt (hcp-Co) nanoparticles are considered suitable for high frequencies due to their nanoparticle morphology and high magnetocrystalline anisotropy. However, the face-centered cubic (fcc) or the ϵ phase with low magnetocrystalline anisotropy is fabricated in the synthetization of Co nanoparticles with a size of less than a few hundred nanometers. In this letter, we investigate the synthesis of Co nanoparticles by the thermolysis of dicobalt octacarbonyl at various temperatures for obtaining Co particles with a single hcp phase. Although Co nanoparticles synthesized at 453 K exhibited a mixture of hcp and fcc phases with an hcp phase ratio of 25%, Co nanoparticles almost achieved the hcp phase ratio of 100% by decreasing the thermolysis temperature to 333 K or lower. Furthermore, we evaluated the permeability spectrum of the composite with Co particles of 10 vol% dispersed in polystyrene. Although the real part of the permeability in the composite containing Co nanoparticles with the mixed phase of fcc and hcp monotonously decreased with frequency, the composite contained Co nanoparticles with a single phase with a suitable constant value up to 3 GHz for high-frequency applications.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of Hexagonal Close-Packed Cobalt Nanoparticles From Thermolysis of Cobalt Carbonyl\",\"authors\":\"Kyohei Takahashi;Hiroshi Ito;Isao Kanada;Hiroyuki Matsumoto\",\"doi\":\"10.1109/LMAG.2023.3316608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Magnetic materials with low magnetic loss are required to realize both a high-frequency support and a miniaturization of radio frequency components. Hexagonal close-packed cobalt (hcp-Co) nanoparticles are considered suitable for high frequencies due to their nanoparticle morphology and high magnetocrystalline anisotropy. However, the face-centered cubic (fcc) or the ϵ phase with low magnetocrystalline anisotropy is fabricated in the synthetization of Co nanoparticles with a size of less than a few hundred nanometers. In this letter, we investigate the synthesis of Co nanoparticles by the thermolysis of dicobalt octacarbonyl at various temperatures for obtaining Co particles with a single hcp phase. Although Co nanoparticles synthesized at 453 K exhibited a mixture of hcp and fcc phases with an hcp phase ratio of 25%, Co nanoparticles almost achieved the hcp phase ratio of 100% by decreasing the thermolysis temperature to 333 K or lower. Furthermore, we evaluated the permeability spectrum of the composite with Co particles of 10 vol% dispersed in polystyrene. Although the real part of the permeability in the composite containing Co nanoparticles with the mixed phase of fcc and hcp monotonously decreased with frequency, the composite contained Co nanoparticles with a single phase with a suitable constant value up to 3 GHz for high-frequency applications.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10254271/\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10254271/","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

需要具有低磁损耗的磁性材料来实现射频部件的高频支撑和小型化。六角紧密堆积的钴(hcp-Co)纳米颗粒由于其纳米颗粒形态和高磁晶各向异性而被认为适用于高频。然而,在合成尺寸小于几百纳米的Co纳米颗粒的过程中,制备了具有低磁晶各向异性的面心立方(fcc)或ε相。在这封信中,我们研究了通过在不同温度下热解八羰基二钴来合成Co纳米颗粒,以获得具有单一hcp相的Co颗粒。尽管在453K下合成的Co纳米颗粒表现出hcp和fcc相的混合物,hcp相比率为25%,但通过将热解温度降低到333K或更低,Co纳米颗粒几乎实现了100%的hcp相比例。此外,我们评估了具有分散在聚苯乙烯中的10体积%的Co颗粒的复合材料的渗透光谱。尽管含有具有fcc和hcp混合相的Co纳米颗粒的复合材料中的磁导率的实部随着频率单调降低,但对于高频应用,该复合材料含有具有高达3GHz的合适恒定值的单相Co纳米颗粒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synthesis of Hexagonal Close-Packed Cobalt Nanoparticles From Thermolysis of Cobalt Carbonyl
Magnetic materials with low magnetic loss are required to realize both a high-frequency support and a miniaturization of radio frequency components. Hexagonal close-packed cobalt (hcp-Co) nanoparticles are considered suitable for high frequencies due to their nanoparticle morphology and high magnetocrystalline anisotropy. However, the face-centered cubic (fcc) or the ϵ phase with low magnetocrystalline anisotropy is fabricated in the synthetization of Co nanoparticles with a size of less than a few hundred nanometers. In this letter, we investigate the synthesis of Co nanoparticles by the thermolysis of dicobalt octacarbonyl at various temperatures for obtaining Co particles with a single hcp phase. Although Co nanoparticles synthesized at 453 K exhibited a mixture of hcp and fcc phases with an hcp phase ratio of 25%, Co nanoparticles almost achieved the hcp phase ratio of 100% by decreasing the thermolysis temperature to 333 K or lower. Furthermore, we evaluated the permeability spectrum of the composite with Co particles of 10 vol% dispersed in polystyrene. Although the real part of the permeability in the composite containing Co nanoparticles with the mixed phase of fcc and hcp monotonously decreased with frequency, the composite contained Co nanoparticles with a single phase with a suitable constant value up to 3 GHz for high-frequency applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Mentorship in academic musculoskeletal radiology: perspectives from a junior faculty member. Underlying synovial sarcoma undiagnosed for more than 20 years in a patient with regional pain: a case report. Sacrococcygeal chordoma with spontaneous regression due to a large hemorrhagic component. Associations of cumulative voriconazole dose, treatment duration, and alkaline phosphatase with voriconazole-induced periostitis. Can the presence of SLAP-5 lesions be predicted by using the critical shoulder angle in traumatic anterior shoulder instability?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1