通过增强分流筛管延长裸眼砾石充填间隔

IF 1.3 4区 工程技术 Q3 ENGINEERING, PETROLEUM SPE Drilling & Completion Pub Date : 2021-01-01 DOI:10.2118/201731-PA
A. Dikshit, Amrendra Kumar, M. Langlais, B. Gadiyar, G. Woiceshyn, M. Parlar
{"title":"通过增强分流筛管延长裸眼砾石充填间隔","authors":"A. Dikshit, Amrendra Kumar, M. Langlais, B. Gadiyar, G. Woiceshyn, M. Parlar","doi":"10.2118/201731-PA","DOIUrl":null,"url":null,"abstract":"For offshore wells requiring sand control, it is beneficial to extend the openhole length to access more reserves with a reduced well count. In challenging environments (e.g., low fracture pressure, highly unconsolidated sand), gravel packing with shunt tubes has been used successfully to virtually ensure a complete pack, thereby minimizing the risk of sand-control failure. Although shunt-tube gravel-pack technologies already exist, several issues must be addressed to gravel pack longer wells. First, the extra volume of gravel passing through shunt-tube manifolds raises erosion concerns. Second, the burst rating of the entire shunt system needs to be increased to allow continuous packing through shunts in a heel-to-toe fashion. Third, higher leakoff through the packed interval might increase gravel concentration, which increases friction and the risk of bridging inside the shunts. This study discusses the development and testing of a modified shunted screen that could extend openhole gravel-packing lengths to more than 7,000 ft with zonal isolation. The first step was to use computational fluid dynamics (CFD) simulations to investigate the erosion-prone areas in our existing conventional shunted-screen-technology (SST) manifold design. The CFD results were then used to modify the manifold and make it more resistant to erosion. Prototypes were manufactured and erosion tests were conducted to validate and qualify the new design for targeted proppant concentrations, flow rates, and treatment volumes. Any weak areas found in the shunt system were modified to enable higher burst pressure. The modified shunt system was then independently tested to quantify the burst limits. The concerns regarding high leakoff, friction, and bridging inside the tubes were first addressed by means of experimentation. The first nozzle distance was then modified according to these results. Verification of the modified system design was performed by means of gravel-pack testing on a full-scale model. It was observed that the proposed enhanced-SST (ESST) had no erosion failure after 450,000 lbm of proppant at a slurry rate of 5 bbl/min. The proposed ESST was successfully tested for 10,000-psi burst pressure after the erosion test. The initial motivation, design changes, and tests that led to the development of the modified system are presented herein.","PeriodicalId":51165,"journal":{"name":"SPE Drilling & Completion","volume":"1 1","pages":"1-14"},"PeriodicalIF":1.3000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Extending Openhole Gravel-Packing Intervals through Enhanced Shunted Screens\",\"authors\":\"A. Dikshit, Amrendra Kumar, M. Langlais, B. Gadiyar, G. Woiceshyn, M. Parlar\",\"doi\":\"10.2118/201731-PA\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For offshore wells requiring sand control, it is beneficial to extend the openhole length to access more reserves with a reduced well count. In challenging environments (e.g., low fracture pressure, highly unconsolidated sand), gravel packing with shunt tubes has been used successfully to virtually ensure a complete pack, thereby minimizing the risk of sand-control failure. Although shunt-tube gravel-pack technologies already exist, several issues must be addressed to gravel pack longer wells. First, the extra volume of gravel passing through shunt-tube manifolds raises erosion concerns. Second, the burst rating of the entire shunt system needs to be increased to allow continuous packing through shunts in a heel-to-toe fashion. Third, higher leakoff through the packed interval might increase gravel concentration, which increases friction and the risk of bridging inside the shunts. This study discusses the development and testing of a modified shunted screen that could extend openhole gravel-packing lengths to more than 7,000 ft with zonal isolation. The first step was to use computational fluid dynamics (CFD) simulations to investigate the erosion-prone areas in our existing conventional shunted-screen-technology (SST) manifold design. The CFD results were then used to modify the manifold and make it more resistant to erosion. Prototypes were manufactured and erosion tests were conducted to validate and qualify the new design for targeted proppant concentrations, flow rates, and treatment volumes. Any weak areas found in the shunt system were modified to enable higher burst pressure. The modified shunt system was then independently tested to quantify the burst limits. The concerns regarding high leakoff, friction, and bridging inside the tubes were first addressed by means of experimentation. The first nozzle distance was then modified according to these results. Verification of the modified system design was performed by means of gravel-pack testing on a full-scale model. It was observed that the proposed enhanced-SST (ESST) had no erosion failure after 450,000 lbm of proppant at a slurry rate of 5 bbl/min. The proposed ESST was successfully tested for 10,000-psi burst pressure after the erosion test. The initial motivation, design changes, and tests that led to the development of the modified system are presented herein.\",\"PeriodicalId\":51165,\"journal\":{\"name\":\"SPE Drilling & Completion\",\"volume\":\"1 1\",\"pages\":\"1-14\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPE Drilling & Completion\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2118/201731-PA\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, PETROLEUM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPE Drilling & Completion","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2118/201731-PA","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, PETROLEUM","Score":null,"Total":0}
引用次数: 1

摘要

对于需要防砂的海上井来说,在减少井数的情况下,延长裸眼长度以获得更多的储量是有益的。在具有挑战性的环境中(例如,低破裂压力,高度松散的砂),使用分流管的砾石充填已经成功地确保了充填的完整性,从而最大限度地降低了防砂失败的风险。虽然分流管砾石充填技术已经存在,但对于长井的砾石充填,还需要解决几个问题。首先,通过分流管歧管的额外砾石体积引起了对侵蚀的担忧。其次,需要提高整个分流系统的爆裂额定值,以便能够以从头到脚的方式连续充填分流器。第三,充填段的高泄漏可能会增加砾石浓度,从而增加摩擦和分流器内部桥接的风险。本研究讨论了一种改进型分流筛管的开发和测试,该筛管可以将裸眼砾石充填长度延长至7000英尺以上,并进行层间隔离。第一步是使用计算流体动力学(CFD)模拟来研究现有传统分流筛管技术(SST)歧管设计中容易发生侵蚀的区域。然后使用CFD结果来修改歧管,使其更耐侵蚀。制作了原型,并进行了侵蚀测试,以验证和验证新设计的目标支撑剂浓度、流速和处理量。在分流系统中发现的任何薄弱区域都进行了修改,以提高爆裂压力。然后对改进后的分流系统进行了独立测试,以量化突发极限。首先通过实验解决了管内高泄漏、摩擦和桥接等问题。然后根据这些结果修改第一喷嘴距离。通过在全尺寸模型上进行砾石充填测试,验证了修改后的系统设计。研究人员观察到,在注入45万磅支撑剂、液速为5桶/分钟的情况下,所提出的增强型sst (ESST)没有发生侵蚀破坏。在冲蚀测试后,所提出的ESST成功地进行了10,000 psi的爆裂压力测试。本文介绍了导致改进系统开发的最初动机、设计变更和测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Extending Openhole Gravel-Packing Intervals through Enhanced Shunted Screens
For offshore wells requiring sand control, it is beneficial to extend the openhole length to access more reserves with a reduced well count. In challenging environments (e.g., low fracture pressure, highly unconsolidated sand), gravel packing with shunt tubes has been used successfully to virtually ensure a complete pack, thereby minimizing the risk of sand-control failure. Although shunt-tube gravel-pack technologies already exist, several issues must be addressed to gravel pack longer wells. First, the extra volume of gravel passing through shunt-tube manifolds raises erosion concerns. Second, the burst rating of the entire shunt system needs to be increased to allow continuous packing through shunts in a heel-to-toe fashion. Third, higher leakoff through the packed interval might increase gravel concentration, which increases friction and the risk of bridging inside the shunts. This study discusses the development and testing of a modified shunted screen that could extend openhole gravel-packing lengths to more than 7,000 ft with zonal isolation. The first step was to use computational fluid dynamics (CFD) simulations to investigate the erosion-prone areas in our existing conventional shunted-screen-technology (SST) manifold design. The CFD results were then used to modify the manifold and make it more resistant to erosion. Prototypes were manufactured and erosion tests were conducted to validate and qualify the new design for targeted proppant concentrations, flow rates, and treatment volumes. Any weak areas found in the shunt system were modified to enable higher burst pressure. The modified shunt system was then independently tested to quantify the burst limits. The concerns regarding high leakoff, friction, and bridging inside the tubes were first addressed by means of experimentation. The first nozzle distance was then modified according to these results. Verification of the modified system design was performed by means of gravel-pack testing on a full-scale model. It was observed that the proposed enhanced-SST (ESST) had no erosion failure after 450,000 lbm of proppant at a slurry rate of 5 bbl/min. The proposed ESST was successfully tested for 10,000-psi burst pressure after the erosion test. The initial motivation, design changes, and tests that led to the development of the modified system are presented herein.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
SPE Drilling & Completion
SPE Drilling & Completion 工程技术-工程:石油
CiteScore
4.20
自引率
7.10%
发文量
29
审稿时长
6-12 weeks
期刊介绍: Covers horizontal and directional drilling, drilling fluids, bit technology, sand control, perforating, cementing, well control, completions and drilling operations.
期刊最新文献
Combining Magnetic and Gyroscopic Surveys Provides the Best Possible Accuracy Applications of Machine Learning Methods to Predict Hole Cleaning in Horizontal and Highly Deviated Wells Experimental Investigation of Geopolymers for Application in High-Temperature and Geothermal Well Cementing Analysis of Riser Gas Pressure from Full-Scale Gas-in-Riser Experiments with Instrumentation Correlating Surface and Downhole Perforation Entry Hole Measurements Leads to Development of Improved Perforating Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1