低熔点合金塞在模型盐水井中的测试

IF 1.4 4区 工程技术 Q2 ENGINEERING, PETROLEUM Spe Production & Operations Pub Date : 2021-01-01 DOI:10.2118/205001-PA
Hua Zhang, T. Ramakrishnan, Q. Elias
{"title":"低熔点合金塞在模型盐水井中的测试","authors":"Hua Zhang, T. Ramakrishnan, Q. Elias","doi":"10.2118/205001-PA","DOIUrl":null,"url":null,"abstract":"Low-melting-point bismuth- (Bi-) based alloys have recently been proposed for plug-and-abandonment (P&A). Previous experiments have shown the feasibility of BiSn [58-wt% Bi and 42-wt% tin (Sn)] and BiAg [97.5-wt% Bi and 2.5-wt% silver (Ag)] alloy plugs in moderate temperature wells, both across shales and across the shale/sandstone sequence. These were validated in linear and cylindrical wellbore cavity geometries for various differential setting pressures for alloy over air. Until now, all of the experiments for setting alloy plugs have been conducted with air as the wetting fluid. Given the lack of adhesion between minerals and alloy, our concept for providing bond strength and integrity has hinged on providing a bicontinuous structure through alloy penetration into the pore network. For shales, with a positive setting pressure, anchors on the surface, in lieu of pores, have proven to be adequate. With results obtained under excess alloy pressure, we have quantified the effect of setting pressure on the alloy/shale bond quality. With brine as the wetting fluid, imposing an excess pressure on the alloy has not been demonstrated previously. This paper is the continuation of our previously published papers (Zhang et al. 2020a, 2020b), and our objective here is not only to show the possibility of forming a plug under brine but also to quantify the plug’s quality with and without an excess alloy pressure. We first describe an apparatus that controls alloy and brine pressures independently through a semipermeable piston assembly and demonstrate forming alloy plugs in a brine-filled borehole cavity. Based on pressure decay tests across the plug, we demonstrate that wellbore integrity is possible only with a positive alloy pressure over that of brine.","PeriodicalId":22071,"journal":{"name":"Spe Production & Operations","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Testing Low-Melting-Point Alloy Plug in Model Brine-Filled Wells\",\"authors\":\"Hua Zhang, T. Ramakrishnan, Q. Elias\",\"doi\":\"10.2118/205001-PA\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Low-melting-point bismuth- (Bi-) based alloys have recently been proposed for plug-and-abandonment (P&A). Previous experiments have shown the feasibility of BiSn [58-wt% Bi and 42-wt% tin (Sn)] and BiAg [97.5-wt% Bi and 2.5-wt% silver (Ag)] alloy plugs in moderate temperature wells, both across shales and across the shale/sandstone sequence. These were validated in linear and cylindrical wellbore cavity geometries for various differential setting pressures for alloy over air. Until now, all of the experiments for setting alloy plugs have been conducted with air as the wetting fluid. Given the lack of adhesion between minerals and alloy, our concept for providing bond strength and integrity has hinged on providing a bicontinuous structure through alloy penetration into the pore network. For shales, with a positive setting pressure, anchors on the surface, in lieu of pores, have proven to be adequate. With results obtained under excess alloy pressure, we have quantified the effect of setting pressure on the alloy/shale bond quality. With brine as the wetting fluid, imposing an excess pressure on the alloy has not been demonstrated previously. This paper is the continuation of our previously published papers (Zhang et al. 2020a, 2020b), and our objective here is not only to show the possibility of forming a plug under brine but also to quantify the plug’s quality with and without an excess alloy pressure. We first describe an apparatus that controls alloy and brine pressures independently through a semipermeable piston assembly and demonstrate forming alloy plugs in a brine-filled borehole cavity. Based on pressure decay tests across the plug, we demonstrate that wellbore integrity is possible only with a positive alloy pressure over that of brine.\",\"PeriodicalId\":22071,\"journal\":{\"name\":\"Spe Production & Operations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spe Production & Operations\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2118/205001-PA\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, PETROLEUM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spe Production & Operations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2118/205001-PA","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, PETROLEUM","Score":null,"Total":0}
引用次数: 1

摘要

低熔点铋(Bi)基合金最近被提出用于弃井(P&A)。之前的实验表明,在中温井中,无论是在页岩井还是在页岩/砂岩层序中,BiSn [58-wt% Bi和42-wt%锡(Sn)]和BiAg [97.5 wt% Bi和2.5 wt%银(Ag)]合金桥塞都是可行的。这些方法在线性和圆柱形井腔几何形状中进行了验证,以适应不同的合金空气压差设置压力。到目前为止,所有合金塞的坐封实验都是用空气作为润湿液进行的。鉴于矿物和合金之间缺乏附着力,我们提供结合强度和完整性的概念取决于通过合金渗透到孔隙网络中提供双连续结构。对于坐封压力为正的页岩,地面锚定代替孔隙已被证明是足够的。通过在超合金压力下获得的结果,我们量化了坐封压力对合金/页岩胶结质量的影响。以卤水为润湿液,在合金上施加过大压力以前没有被证明过。这篇论文是我们之前发表的论文(Zhang et al. 2020a, 2020b)的延续,我们的目标不仅是展示在盐水下形成桥塞的可能性,而且要量化桥塞在有和没有过量合金压力的情况下的质量。我们首先描述了一种通过半透活塞组件独立控制合金和盐水压力的装置,并演示了在充满盐水的井腔中形成合金塞。通过桥塞的压力衰减测试,我们证明,只有合金压力大于盐水压力时,才能保证井筒完整性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Testing Low-Melting-Point Alloy Plug in Model Brine-Filled Wells
Low-melting-point bismuth- (Bi-) based alloys have recently been proposed for plug-and-abandonment (P&A). Previous experiments have shown the feasibility of BiSn [58-wt% Bi and 42-wt% tin (Sn)] and BiAg [97.5-wt% Bi and 2.5-wt% silver (Ag)] alloy plugs in moderate temperature wells, both across shales and across the shale/sandstone sequence. These were validated in linear and cylindrical wellbore cavity geometries for various differential setting pressures for alloy over air. Until now, all of the experiments for setting alloy plugs have been conducted with air as the wetting fluid. Given the lack of adhesion between minerals and alloy, our concept for providing bond strength and integrity has hinged on providing a bicontinuous structure through alloy penetration into the pore network. For shales, with a positive setting pressure, anchors on the surface, in lieu of pores, have proven to be adequate. With results obtained under excess alloy pressure, we have quantified the effect of setting pressure on the alloy/shale bond quality. With brine as the wetting fluid, imposing an excess pressure on the alloy has not been demonstrated previously. This paper is the continuation of our previously published papers (Zhang et al. 2020a, 2020b), and our objective here is not only to show the possibility of forming a plug under brine but also to quantify the plug’s quality with and without an excess alloy pressure. We first describe an apparatus that controls alloy and brine pressures independently through a semipermeable piston assembly and demonstrate forming alloy plugs in a brine-filled borehole cavity. Based on pressure decay tests across the plug, we demonstrate that wellbore integrity is possible only with a positive alloy pressure over that of brine.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Spe Production & Operations
Spe Production & Operations 工程技术-工程:石油
CiteScore
3.70
自引率
8.30%
发文量
54
审稿时长
3 months
期刊介绍: SPE Production & Operations includes papers on production operations, artificial lift, downhole equipment, formation damage control, multiphase flow, workovers, stimulation, facility design and operations, water treatment, project management, construction methods and equipment, and related PFC systems and emerging technologies.
期刊最新文献
Implementation of a New Proprietary Vortex Fluid Sucker Rod Pump System to Improve Production by Enhancing Flow Dynamics Geomechanical Modeling of Fracture-Induced Vertical Strain Measured by Distributed Fiber-Optic Strain Sensing Kaolinite Effects on Injectivity Impairment: Field Evidence and Laboratory Results Emulsification Characteristics and Electrolyte-Optimized Demulsification of Produced Liquid from Polymer Flooding on Alaska North Slope Dimensionless Artificial Intelligence-Based Model for Multiphase Flow Pattern Recognition in Horizontal Pipe
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1