超图矩阵模型

Mario DeFranco DeFranco, P. Gunnells
{"title":"超图矩阵模型","authors":"Mario DeFranco DeFranco, P. Gunnells","doi":"10.17323/1609-4514-2021-21-4-737-766","DOIUrl":null,"url":null,"abstract":"The classical GUE matrix model of N×N Hermitian matrices equipped with the Gaussian measure can be used to count the orientable topological surfaces by genus obtained through gluing the edges of a polygon. We introduce a variation of the GUE matrix model that that enumerates certain edge-ramified CW complexes obtained from polygon gluings. We do this by replacing the Gaussian measure with a formal analogue related to generating functions that enumerate uniform hypergraphs. Our main results are three different ways to compute expectations of traces of powers. In particular, we show that our matrix model has a topological expansion.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hypergraph Matrix Models\",\"authors\":\"Mario DeFranco DeFranco, P. Gunnells\",\"doi\":\"10.17323/1609-4514-2021-21-4-737-766\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The classical GUE matrix model of N×N Hermitian matrices equipped with the Gaussian measure can be used to count the orientable topological surfaces by genus obtained through gluing the edges of a polygon. We introduce a variation of the GUE matrix model that that enumerates certain edge-ramified CW complexes obtained from polygon gluings. We do this by replacing the Gaussian measure with a formal analogue related to generating functions that enumerate uniform hypergraphs. Our main results are three different ways to compute expectations of traces of powers. In particular, we show that our matrix model has a topological expansion.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.17323/1609-4514-2021-21-4-737-766\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.17323/1609-4514-2021-21-4-737-766","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

经典的N×N厄米矩阵的GUE矩阵模型配以高斯测度,可以用多边形边缘胶合得到的格数对可定向拓扑曲面进行计数。我们介绍了GUE矩阵模型的一种变体,该模型列举了由多边形胶合得到的某些边分枝的连续波配合物。我们通过将高斯测度替换为与生成枚举均匀超图的函数相关的形式化模拟来做到这一点。我们的主要结果是计算幂迹期望的三种不同方法。特别是,我们证明了我们的矩阵模型具有拓扑展开性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
Hypergraph Matrix Models
The classical GUE matrix model of N×N Hermitian matrices equipped with the Gaussian measure can be used to count the orientable topological surfaces by genus obtained through gluing the edges of a polygon. We introduce a variation of the GUE matrix model that that enumerates certain edge-ramified CW complexes obtained from polygon gluings. We do this by replacing the Gaussian measure with a formal analogue related to generating functions that enumerate uniform hypergraphs. Our main results are three different ways to compute expectations of traces of powers. In particular, we show that our matrix model has a topological expansion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1