{"title":"人工智能方法在催化裂化过程中的应用","authors":"Fan Yang;Mao Xu;Wenqiang Lei;Jiancheng Lv","doi":"10.26599/BDMA.2023.9020002","DOIUrl":null,"url":null,"abstract":"Fluidic Catalytic Cracking (FCC) is a complex petrochemical process affected by many highly non-linear and interrelated factors. Product yield analysis, flue gas desulfurization prediction, and abnormal condition warning are several key research directions in FCC. This paper will sort out the relevant research results of the existing Artificial Intelligence (AI) algorithms applied to the analysis and optimization of catalytic cracking processes, with a view to providing help for the follow-up research. Compared with the traditional mathematical mechanism method, the AI method can effectively solve the difficulties in FCC process modeling, such as high-dimensional, nonlinear, strong correlation, and large delay. AI methods applied in product yield analysis build models based on massive data. By fitting the functional relationship between operating variables and products, the excessive simplification of mechanism model can be avoided, resulting in high model accuracy. AI methods applied in flue gas desulfurization can be usually divided into two stages: modeling and optimization. In the modeling stage, data-driven methods are often used to build the system model or rule base; In the optimization stage, heuristic search or reinforcement learning methods can be applied to find the optimal operating parameters based on the constructed model or rule base. AI methods, including data-driven and knowledge-driven algorithms, are widely used in the abnormal condition warning. Knowledge-driven methods have advantages in interpretability and generalization, but disadvantages in construction difficulty and prediction recall. While the data-driven methods are just the opposite. Thus, some studies combine these two methods to obtain better results.","PeriodicalId":52355,"journal":{"name":"Big Data Mining and Analytics","volume":"6 3","pages":"361-380"},"PeriodicalIF":7.7000,"publicationDate":"2023-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8254253/10097649/10097651.pdf","citationCount":"1","resultStr":"{\"title\":\"Artificial Intelligence Methods Applied to Catalytic Cracking Processes\",\"authors\":\"Fan Yang;Mao Xu;Wenqiang Lei;Jiancheng Lv\",\"doi\":\"10.26599/BDMA.2023.9020002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fluidic Catalytic Cracking (FCC) is a complex petrochemical process affected by many highly non-linear and interrelated factors. Product yield analysis, flue gas desulfurization prediction, and abnormal condition warning are several key research directions in FCC. This paper will sort out the relevant research results of the existing Artificial Intelligence (AI) algorithms applied to the analysis and optimization of catalytic cracking processes, with a view to providing help for the follow-up research. Compared with the traditional mathematical mechanism method, the AI method can effectively solve the difficulties in FCC process modeling, such as high-dimensional, nonlinear, strong correlation, and large delay. AI methods applied in product yield analysis build models based on massive data. By fitting the functional relationship between operating variables and products, the excessive simplification of mechanism model can be avoided, resulting in high model accuracy. AI methods applied in flue gas desulfurization can be usually divided into two stages: modeling and optimization. In the modeling stage, data-driven methods are often used to build the system model or rule base; In the optimization stage, heuristic search or reinforcement learning methods can be applied to find the optimal operating parameters based on the constructed model or rule base. AI methods, including data-driven and knowledge-driven algorithms, are widely used in the abnormal condition warning. Knowledge-driven methods have advantages in interpretability and generalization, but disadvantages in construction difficulty and prediction recall. While the data-driven methods are just the opposite. Thus, some studies combine these two methods to obtain better results.\",\"PeriodicalId\":52355,\"journal\":{\"name\":\"Big Data Mining and Analytics\",\"volume\":\"6 3\",\"pages\":\"361-380\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2023-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/8254253/10097649/10097651.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Big Data Mining and Analytics\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10097651/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data Mining and Analytics","FirstCategoryId":"1093","ListUrlMain":"https://ieeexplore.ieee.org/document/10097651/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Artificial Intelligence Methods Applied to Catalytic Cracking Processes
Fluidic Catalytic Cracking (FCC) is a complex petrochemical process affected by many highly non-linear and interrelated factors. Product yield analysis, flue gas desulfurization prediction, and abnormal condition warning are several key research directions in FCC. This paper will sort out the relevant research results of the existing Artificial Intelligence (AI) algorithms applied to the analysis and optimization of catalytic cracking processes, with a view to providing help for the follow-up research. Compared with the traditional mathematical mechanism method, the AI method can effectively solve the difficulties in FCC process modeling, such as high-dimensional, nonlinear, strong correlation, and large delay. AI methods applied in product yield analysis build models based on massive data. By fitting the functional relationship between operating variables and products, the excessive simplification of mechanism model can be avoided, resulting in high model accuracy. AI methods applied in flue gas desulfurization can be usually divided into two stages: modeling and optimization. In the modeling stage, data-driven methods are often used to build the system model or rule base; In the optimization stage, heuristic search or reinforcement learning methods can be applied to find the optimal operating parameters based on the constructed model or rule base. AI methods, including data-driven and knowledge-driven algorithms, are widely used in the abnormal condition warning. Knowledge-driven methods have advantages in interpretability and generalization, but disadvantages in construction difficulty and prediction recall. While the data-driven methods are just the opposite. Thus, some studies combine these two methods to obtain better results.
期刊介绍:
Big Data Mining and Analytics, a publication by Tsinghua University Press, presents groundbreaking research in the field of big data research and its applications. This comprehensive book delves into the exploration and analysis of vast amounts of data from diverse sources to uncover hidden patterns, correlations, insights, and knowledge.
Featuring the latest developments, research issues, and solutions, this book offers valuable insights into the world of big data. It provides a deep understanding of data mining techniques, data analytics, and their practical applications.
Big Data Mining and Analytics has gained significant recognition and is indexed and abstracted in esteemed platforms such as ESCI, EI, Scopus, DBLP Computer Science, Google Scholar, INSPEC, CSCD, DOAJ, CNKI, and more.
With its wealth of information and its ability to transform the way we perceive and utilize data, this book is a must-read for researchers, professionals, and anyone interested in the field of big data analytics.