基于深度卷积网络的卫星云图分类机器智能模型

IF 7.7 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Big Data Mining and Analytics Pub Date : 2022-11-24 DOI:10.26599/BDMA.2021.9020017
Kalyan Kumar Jena;Sourav Kumar Bhoi;Soumya Ranjan Nayak;Ranjit Panigrahi;Akash Kumar Bhoi
{"title":"基于深度卷积网络的卫星云图分类机器智能模型","authors":"Kalyan Kumar Jena;Sourav Kumar Bhoi;Soumya Ranjan Nayak;Ranjit Panigrahi;Akash Kumar Bhoi","doi":"10.26599/BDMA.2021.9020017","DOIUrl":null,"url":null,"abstract":"As a huge number of satellites revolve around the earth, a great probability exists to observe and determine the change phenomena on the earth through the analysis of satellite images on a real-time basis. Therefore, classifying satellite images plays strong assistance in remote sensing communities for predicting tropical cyclones. In this article, a classification approach is proposed using Deep Convolutional Neural Network (DCNN), comprising numerous layers, which extract the features through a downsampling process for classifying satellite cloud images. DCNN is trained marvelously on cloud images with an impressive amount of prediction accuracy. Delivery time decreases for testing images, whereas prediction accuracy increases using an appropriate deep convolutional network with a huge number of training dataset instances. The satellite images are taken from the Meteorological & Oceanographic Satellite Data Archival Centre, the organization is responsible for availing satellite cloud images of India and its subcontinent. The proposed cloud image classification shows 94% prediction accuracy with the DCNN framework.","PeriodicalId":52355,"journal":{"name":"Big Data Mining and Analytics","volume":"6 1","pages":"32-43"},"PeriodicalIF":7.7000,"publicationDate":"2022-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8254253/9962810/09962954.pdf","citationCount":"3","resultStr":"{\"title\":\"Deep Convolutional Network Based Machine Intelligence Model for Satellite Cloud Image Classification\",\"authors\":\"Kalyan Kumar Jena;Sourav Kumar Bhoi;Soumya Ranjan Nayak;Ranjit Panigrahi;Akash Kumar Bhoi\",\"doi\":\"10.26599/BDMA.2021.9020017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a huge number of satellites revolve around the earth, a great probability exists to observe and determine the change phenomena on the earth through the analysis of satellite images on a real-time basis. Therefore, classifying satellite images plays strong assistance in remote sensing communities for predicting tropical cyclones. In this article, a classification approach is proposed using Deep Convolutional Neural Network (DCNN), comprising numerous layers, which extract the features through a downsampling process for classifying satellite cloud images. DCNN is trained marvelously on cloud images with an impressive amount of prediction accuracy. Delivery time decreases for testing images, whereas prediction accuracy increases using an appropriate deep convolutional network with a huge number of training dataset instances. The satellite images are taken from the Meteorological & Oceanographic Satellite Data Archival Centre, the organization is responsible for availing satellite cloud images of India and its subcontinent. The proposed cloud image classification shows 94% prediction accuracy with the DCNN framework.\",\"PeriodicalId\":52355,\"journal\":{\"name\":\"Big Data Mining and Analytics\",\"volume\":\"6 1\",\"pages\":\"32-43\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2022-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/8254253/9962810/09962954.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Big Data Mining and Analytics\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9962954/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data Mining and Analytics","FirstCategoryId":"1093","ListUrlMain":"https://ieeexplore.ieee.org/document/9962954/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 3

摘要

随着大量卫星围绕地球旋转,通过实时分析卫星图像来观察和确定地球上的变化现象的可能性很大。因此,对卫星图像进行分类对遥感社区预测热带气旋起到了强有力的帮助。在本文中,提出了一种使用深度卷积神经网络(DCNN)的分类方法,该网络包括许多层,通过下采样过程提取特征,用于对卫星云图进行分类。DCNN在云图像上进行了出色的训练,具有令人印象深刻的预测精度。测试图像的交付时间减少,而使用具有大量训练数据集实例的适当深度卷积网络来提高预测精度。卫星图像取自气象和海洋学卫星数据档案中心,该组织负责利用印度及其次大陆的卫星云图。所提出的云图像分类在DCNN框架下显示出94%的预测准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep Convolutional Network Based Machine Intelligence Model for Satellite Cloud Image Classification
As a huge number of satellites revolve around the earth, a great probability exists to observe and determine the change phenomena on the earth through the analysis of satellite images on a real-time basis. Therefore, classifying satellite images plays strong assistance in remote sensing communities for predicting tropical cyclones. In this article, a classification approach is proposed using Deep Convolutional Neural Network (DCNN), comprising numerous layers, which extract the features through a downsampling process for classifying satellite cloud images. DCNN is trained marvelously on cloud images with an impressive amount of prediction accuracy. Delivery time decreases for testing images, whereas prediction accuracy increases using an appropriate deep convolutional network with a huge number of training dataset instances. The satellite images are taken from the Meteorological & Oceanographic Satellite Data Archival Centre, the organization is responsible for availing satellite cloud images of India and its subcontinent. The proposed cloud image classification shows 94% prediction accuracy with the DCNN framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Big Data Mining and Analytics
Big Data Mining and Analytics Computer Science-Computer Science Applications
CiteScore
20.90
自引率
2.20%
发文量
84
期刊介绍: Big Data Mining and Analytics, a publication by Tsinghua University Press, presents groundbreaking research in the field of big data research and its applications. This comprehensive book delves into the exploration and analysis of vast amounts of data from diverse sources to uncover hidden patterns, correlations, insights, and knowledge. Featuring the latest developments, research issues, and solutions, this book offers valuable insights into the world of big data. It provides a deep understanding of data mining techniques, data analytics, and their practical applications. Big Data Mining and Analytics has gained significant recognition and is indexed and abstracted in esteemed platforms such as ESCI, EI, Scopus, DBLP Computer Science, Google Scholar, INSPEC, CSCD, DOAJ, CNKI, and more. With its wealth of information and its ability to transform the way we perceive and utilize data, this book is a must-read for researchers, professionals, and anyone interested in the field of big data analytics.
期刊最新文献
Contents Front Cover Incremental Data Stream Classification with Adaptive Multi-Task Multi-View Learning Attention-Based CNN Fusion Model for Emotion Recognition During Walking Using Discrete Wavelet Transform on EEG and Inertial Signals Gender-Based Analysis of User Reactions to Facebook Posts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1