{"title":"选择可持续的使用点/入口点处理系统的决策支持系统(D4SPOUTS)","authors":"M. Hamouda, W. B. Anderson, P. Huck","doi":"10.2166/WQRJC.2013.058","DOIUrl":null,"url":null,"abstract":"Point-of-use (POU) and point-of-entry (POE) devices are, in some situations, considered to be a viable solution for drinking water suppliers and consumers alike to deal with site specific drinking water issues. This paper introduces a newly developed decision support system (DSS) that employs decision making techniques to select among the various devices based on their characterization and sustainability assessment. Careful illustration of the various aspects and components of the DSS is provided and the decision process is explained. Aspects of validity, usability and sensitivity analysis are demonstrated through a hypothetical case study for removing lead introduced in the distribution system of municipally treated drinking water. The output of the DSS helps to determine the more sustainable treatment devices which should have positive implications for the application of POU and POE devices. Other potential uses of the DSS are described to illustrate its versatility and usefulness. The DSS is not intended to replace common engineering practice in selecting POU and POE treatment systems, but rather to give support to the users by providing the necessary information about all possible solutions.","PeriodicalId":54407,"journal":{"name":"Water Quality Research Journal of Canada","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2014-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2166/WQRJC.2013.058","citationCount":"1","resultStr":"{\"title\":\"Decision support system to select sustainable point-of-use/point-of-entry treatment systems (D4SPOUTS)\",\"authors\":\"M. Hamouda, W. B. Anderson, P. Huck\",\"doi\":\"10.2166/WQRJC.2013.058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Point-of-use (POU) and point-of-entry (POE) devices are, in some situations, considered to be a viable solution for drinking water suppliers and consumers alike to deal with site specific drinking water issues. This paper introduces a newly developed decision support system (DSS) that employs decision making techniques to select among the various devices based on their characterization and sustainability assessment. Careful illustration of the various aspects and components of the DSS is provided and the decision process is explained. Aspects of validity, usability and sensitivity analysis are demonstrated through a hypothetical case study for removing lead introduced in the distribution system of municipally treated drinking water. The output of the DSS helps to determine the more sustainable treatment devices which should have positive implications for the application of POU and POE devices. Other potential uses of the DSS are described to illustrate its versatility and usefulness. The DSS is not intended to replace common engineering practice in selecting POU and POE treatment systems, but rather to give support to the users by providing the necessary information about all possible solutions.\",\"PeriodicalId\":54407,\"journal\":{\"name\":\"Water Quality Research Journal of Canada\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2014-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2166/WQRJC.2013.058\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Quality Research Journal of Canada\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2166/WQRJC.2013.058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Quality Research Journal of Canada","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/WQRJC.2013.058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
Decision support system to select sustainable point-of-use/point-of-entry treatment systems (D4SPOUTS)
Point-of-use (POU) and point-of-entry (POE) devices are, in some situations, considered to be a viable solution for drinking water suppliers and consumers alike to deal with site specific drinking water issues. This paper introduces a newly developed decision support system (DSS) that employs decision making techniques to select among the various devices based on their characterization and sustainability assessment. Careful illustration of the various aspects and components of the DSS is provided and the decision process is explained. Aspects of validity, usability and sensitivity analysis are demonstrated through a hypothetical case study for removing lead introduced in the distribution system of municipally treated drinking water. The output of the DSS helps to determine the more sustainable treatment devices which should have positive implications for the application of POU and POE devices. Other potential uses of the DSS are described to illustrate its versatility and usefulness. The DSS is not intended to replace common engineering practice in selecting POU and POE treatment systems, but rather to give support to the users by providing the necessary information about all possible solutions.
期刊介绍:
The Water Quality Research Journal publishes peer-reviewed, scholarly articles on the following general subject areas:
Impact of current and emerging contaminants on aquatic ecosystems
Aquatic ecology (ecohydrology and ecohydraulics, invasive species, biodiversity, and aquatic species at risk)
Conservation and protection of aquatic environments
Responsible resource development and water quality (mining, forestry, hydropower, oil and gas)
Drinking water, wastewater and stormwater treatment technologies and strategies
Impacts and solutions of diffuse pollution (urban and agricultural run-off) on water quality
Industrial water quality
Used water: Reuse and resource recovery
Groundwater quality (management, remediation, fracking, legacy contaminants)
Assessment of surface and subsurface water quality
Regulations, economics, strategies and policies related to water quality
Social science issues in relation to water quality
Water quality in remote areas
Water quality in cold climates
The Water Quality Research Journal is a quarterly publication. It is a forum for original research dealing with the aquatic environment, and should report new and significant findings that advance the understanding of the field. Critical review articles are especially encouraged.