{"title":"供水管网污染检测的传感器定位方法综述","authors":"S. Rathi, Rajesh Gupta","doi":"10.2166/WQRJC.2014.011","DOIUrl":null,"url":null,"abstract":"Water distribution networks (WDNs) are vulnerable to various types of contamination events that may have impacts on human health and the environment. Therefore, there is a growing need to design an effective monitoring system. Due to the cost of both placing and maintaining the sensors, their numbers must be limited. This constraint makes the sensor deployment locations crucial in water monitoring systems. Several methodologies have been suggested in the past two decades by different researchers for placement of sensors in WDNs. These methodologies differ in many ways depending on the number of objectives, solution methodology, concentration level of contaminant considered, type of simulation, and so on. In this paper, various methodologies have been broadly classified based on the number of performance objectives as single and multi-objective sensor location problems. Some of the features of these methodologies are also mentioned to help understand the advantages of a particular method over other methods. A critical review of literature is presented. Some of the issues on which a consensus is being developed amongst researchers are discussed and recommendations are made with a view to suggest future research needs for sensor network design of large WDNs.","PeriodicalId":54407,"journal":{"name":"Water Quality Research Journal of Canada","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2015-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2166/WQRJC.2014.011","citationCount":"13","resultStr":"{\"title\":\"A critical review of sensor location methods for contamination detection in water distribution networks\",\"authors\":\"S. Rathi, Rajesh Gupta\",\"doi\":\"10.2166/WQRJC.2014.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Water distribution networks (WDNs) are vulnerable to various types of contamination events that may have impacts on human health and the environment. Therefore, there is a growing need to design an effective monitoring system. Due to the cost of both placing and maintaining the sensors, their numbers must be limited. This constraint makes the sensor deployment locations crucial in water monitoring systems. Several methodologies have been suggested in the past two decades by different researchers for placement of sensors in WDNs. These methodologies differ in many ways depending on the number of objectives, solution methodology, concentration level of contaminant considered, type of simulation, and so on. In this paper, various methodologies have been broadly classified based on the number of performance objectives as single and multi-objective sensor location problems. Some of the features of these methodologies are also mentioned to help understand the advantages of a particular method over other methods. A critical review of literature is presented. Some of the issues on which a consensus is being developed amongst researchers are discussed and recommendations are made with a view to suggest future research needs for sensor network design of large WDNs.\",\"PeriodicalId\":54407,\"journal\":{\"name\":\"Water Quality Research Journal of Canada\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2015-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2166/WQRJC.2014.011\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Quality Research Journal of Canada\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2166/WQRJC.2014.011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Quality Research Journal of Canada","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/WQRJC.2014.011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
A critical review of sensor location methods for contamination detection in water distribution networks
Water distribution networks (WDNs) are vulnerable to various types of contamination events that may have impacts on human health and the environment. Therefore, there is a growing need to design an effective monitoring system. Due to the cost of both placing and maintaining the sensors, their numbers must be limited. This constraint makes the sensor deployment locations crucial in water monitoring systems. Several methodologies have been suggested in the past two decades by different researchers for placement of sensors in WDNs. These methodologies differ in many ways depending on the number of objectives, solution methodology, concentration level of contaminant considered, type of simulation, and so on. In this paper, various methodologies have been broadly classified based on the number of performance objectives as single and multi-objective sensor location problems. Some of the features of these methodologies are also mentioned to help understand the advantages of a particular method over other methods. A critical review of literature is presented. Some of the issues on which a consensus is being developed amongst researchers are discussed and recommendations are made with a view to suggest future research needs for sensor network design of large WDNs.
期刊介绍:
The Water Quality Research Journal publishes peer-reviewed, scholarly articles on the following general subject areas:
Impact of current and emerging contaminants on aquatic ecosystems
Aquatic ecology (ecohydrology and ecohydraulics, invasive species, biodiversity, and aquatic species at risk)
Conservation and protection of aquatic environments
Responsible resource development and water quality (mining, forestry, hydropower, oil and gas)
Drinking water, wastewater and stormwater treatment technologies and strategies
Impacts and solutions of diffuse pollution (urban and agricultural run-off) on water quality
Industrial water quality
Used water: Reuse and resource recovery
Groundwater quality (management, remediation, fracking, legacy contaminants)
Assessment of surface and subsurface water quality
Regulations, economics, strategies and policies related to water quality
Social science issues in relation to water quality
Water quality in remote areas
Water quality in cold climates
The Water Quality Research Journal is a quarterly publication. It is a forum for original research dealing with the aquatic environment, and should report new and significant findings that advance the understanding of the field. Critical review articles are especially encouraged.