Carrie L. Knatz, S. Rafferty, Anthony Delescinskis
{"title":"基于CFD的水厂进水道流场优化","authors":"Carrie L. Knatz, S. Rafferty, Anthony Delescinskis","doi":"10.2166/WQRJC.2014.024","DOIUrl":null,"url":null,"abstract":"In the design of water and wastewater treatment plants, proper flow and solids distribution can be as critical as process design considerations. Insufficient treatment and even plant failures can result from unequal and unmanageable flow and solids distribution. Computational fluid dynamics (CFD) modeling is a valuable tool in the evaluation of flow distribution to multiple units within a treatment process. This article reviews the benefits achieved by performing a CFD analysis of an Infilco high-rate dissolved air flotation (DAF) influent channel prior to finalizing the design of the plant. The CFD model was used to optimize the DAF influent channel configuration with respect to flow distribution to 10 identical process units that were inserted into an existing facility footprint. For the initial configurations modeled, the largest deviation of flow rate to an individual DAF unit was over 60%. Using CFD, design engineers developed a DAF influent channel configuration predicted to achieve less than 10% deviation. The upgraded facility is constructed and in service and the results of the CFD model were confirmed using actual turbidity data, which indicate that the solids are evenly distributed to the DAF process trains.","PeriodicalId":54407,"journal":{"name":"Water Quality Research Journal of Canada","volume":"50 1","pages":"72-82"},"PeriodicalIF":2.0000,"publicationDate":"2015-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2166/WQRJC.2014.024","citationCount":"9","resultStr":"{\"title\":\"Optimization of water treatment plant flow distribution with CFD modeling of an influent channel\",\"authors\":\"Carrie L. Knatz, S. Rafferty, Anthony Delescinskis\",\"doi\":\"10.2166/WQRJC.2014.024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the design of water and wastewater treatment plants, proper flow and solids distribution can be as critical as process design considerations. Insufficient treatment and even plant failures can result from unequal and unmanageable flow and solids distribution. Computational fluid dynamics (CFD) modeling is a valuable tool in the evaluation of flow distribution to multiple units within a treatment process. This article reviews the benefits achieved by performing a CFD analysis of an Infilco high-rate dissolved air flotation (DAF) influent channel prior to finalizing the design of the plant. The CFD model was used to optimize the DAF influent channel configuration with respect to flow distribution to 10 identical process units that were inserted into an existing facility footprint. For the initial configurations modeled, the largest deviation of flow rate to an individual DAF unit was over 60%. Using CFD, design engineers developed a DAF influent channel configuration predicted to achieve less than 10% deviation. The upgraded facility is constructed and in service and the results of the CFD model were confirmed using actual turbidity data, which indicate that the solids are evenly distributed to the DAF process trains.\",\"PeriodicalId\":54407,\"journal\":{\"name\":\"Water Quality Research Journal of Canada\",\"volume\":\"50 1\",\"pages\":\"72-82\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2015-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2166/WQRJC.2014.024\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Quality Research Journal of Canada\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2166/WQRJC.2014.024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Quality Research Journal of Canada","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/WQRJC.2014.024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
Optimization of water treatment plant flow distribution with CFD modeling of an influent channel
In the design of water and wastewater treatment plants, proper flow and solids distribution can be as critical as process design considerations. Insufficient treatment and even plant failures can result from unequal and unmanageable flow and solids distribution. Computational fluid dynamics (CFD) modeling is a valuable tool in the evaluation of flow distribution to multiple units within a treatment process. This article reviews the benefits achieved by performing a CFD analysis of an Infilco high-rate dissolved air flotation (DAF) influent channel prior to finalizing the design of the plant. The CFD model was used to optimize the DAF influent channel configuration with respect to flow distribution to 10 identical process units that were inserted into an existing facility footprint. For the initial configurations modeled, the largest deviation of flow rate to an individual DAF unit was over 60%. Using CFD, design engineers developed a DAF influent channel configuration predicted to achieve less than 10% deviation. The upgraded facility is constructed and in service and the results of the CFD model were confirmed using actual turbidity data, which indicate that the solids are evenly distributed to the DAF process trains.
期刊介绍:
The Water Quality Research Journal publishes peer-reviewed, scholarly articles on the following general subject areas:
Impact of current and emerging contaminants on aquatic ecosystems
Aquatic ecology (ecohydrology and ecohydraulics, invasive species, biodiversity, and aquatic species at risk)
Conservation and protection of aquatic environments
Responsible resource development and water quality (mining, forestry, hydropower, oil and gas)
Drinking water, wastewater and stormwater treatment technologies and strategies
Impacts and solutions of diffuse pollution (urban and agricultural run-off) on water quality
Industrial water quality
Used water: Reuse and resource recovery
Groundwater quality (management, remediation, fracking, legacy contaminants)
Assessment of surface and subsurface water quality
Regulations, economics, strategies and policies related to water quality
Social science issues in relation to water quality
Water quality in remote areas
Water quality in cold climates
The Water Quality Research Journal is a quarterly publication. It is a forum for original research dealing with the aquatic environment, and should report new and significant findings that advance the understanding of the field. Critical review articles are especially encouraged.