响应面法优化国产浒苔对镍和镉的生物吸附

IF 2 Q3 Environmental Science Water Quality Research Journal of Canada Pub Date : 2015-05-01 DOI:10.2166/WQRJC.2015.007
Gholamreza Tolian, S. Jafari, Saeid Zarei
{"title":"响应面法优化国产浒苔对镍和镉的生物吸附","authors":"Gholamreza Tolian, S. Jafari, Saeid Zarei","doi":"10.2166/WQRJC.2015.007","DOIUrl":null,"url":null,"abstract":"In the present paper, the biosorption capacity of an indigenous seaweed Enteromorpha sp. was assessed and compared for nickel(II) and cadmium(II) removal from aqueous solution. Response surface methodology based on Box–Behnken design was employed to achieve the optimum removal conditions as well as investigating the effects of some independent variables on the process performance. It was found that the maximum nickel(II) removal achieved was 87.16% under optimum conditions of pH 4.79, biomass concentration of 1,000 mg/L, contact time 70 min and temperature of 25 °C. For cadmium the optimum conditions were defined as pH 4.88, biomass concentration of 1,000 mg/L, contact time 50 min and temperature fixed at 65 °C which resulted in a maximum 75.16% removal. Equilibrium isotherm studies revealed that Freundlich and Langmuir models were more successful for describing nickel(II) and cadmium(II) biosorption data, respectively. The maximum sorption capacities of biomass, q max, for nickel(II) and cadmium(II) were predicted as 250 and 167 mg/g, respectively, by the Langmuir model. The results suggest Enteromorpha seaweed as an eco-friendly and suitable biosorbent for nickel(II) and cadmium(II) removal from aqueous solutions.","PeriodicalId":54407,"journal":{"name":"Water Quality Research Journal of Canada","volume":"50 1","pages":"109-122"},"PeriodicalIF":2.0000,"publicationDate":"2015-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2166/WQRJC.2015.007","citationCount":"10","resultStr":"{\"title\":\"Optimization of biosorption of nickel(II) and cadmium(II) by indigenous seaweed Enteromorpha using response surface methodology\",\"authors\":\"Gholamreza Tolian, S. Jafari, Saeid Zarei\",\"doi\":\"10.2166/WQRJC.2015.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present paper, the biosorption capacity of an indigenous seaweed Enteromorpha sp. was assessed and compared for nickel(II) and cadmium(II) removal from aqueous solution. Response surface methodology based on Box–Behnken design was employed to achieve the optimum removal conditions as well as investigating the effects of some independent variables on the process performance. It was found that the maximum nickel(II) removal achieved was 87.16% under optimum conditions of pH 4.79, biomass concentration of 1,000 mg/L, contact time 70 min and temperature of 25 °C. For cadmium the optimum conditions were defined as pH 4.88, biomass concentration of 1,000 mg/L, contact time 50 min and temperature fixed at 65 °C which resulted in a maximum 75.16% removal. Equilibrium isotherm studies revealed that Freundlich and Langmuir models were more successful for describing nickel(II) and cadmium(II) biosorption data, respectively. The maximum sorption capacities of biomass, q max, for nickel(II) and cadmium(II) were predicted as 250 and 167 mg/g, respectively, by the Langmuir model. The results suggest Enteromorpha seaweed as an eco-friendly and suitable biosorbent for nickel(II) and cadmium(II) removal from aqueous solutions.\",\"PeriodicalId\":54407,\"journal\":{\"name\":\"Water Quality Research Journal of Canada\",\"volume\":\"50 1\",\"pages\":\"109-122\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2015-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2166/WQRJC.2015.007\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Quality Research Journal of Canada\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2166/WQRJC.2015.007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Quality Research Journal of Canada","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/WQRJC.2015.007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 10

摘要

在本文中,评估和比较了本土海藻Enteromorpha sp.对镍(II)和镉(II)的生物吸附能力。采用基于Box-Behnken设计的响应面法确定了最佳去除条件,并考察了一些自变量对工艺性能的影响。结果表明,在pH为4.79、生物质浓度为1000 mg/L、接触时间为70 min、温度为25℃的最佳条件下,镍(II)去除率最高可达87.16%。对镉的最佳去除率确定为pH为4.88,生物量浓度为1000 mg/L,接触时间为50 min,温度为65℃,去除率最高为75.16%。平衡等温线研究表明,Freundlich和Langmuir模型分别更成功地描述了镍(II)和镉(II)的生物吸附数据。根据Langmuir模型预测,生物质对镍(II)和镉(II)的最大吸附量q max分别为250和167 mg/g。结果表明,浒苔是一种环保的、适合去除水中镍(II)和镉(II)的生物吸附剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimization of biosorption of nickel(II) and cadmium(II) by indigenous seaweed Enteromorpha using response surface methodology
In the present paper, the biosorption capacity of an indigenous seaweed Enteromorpha sp. was assessed and compared for nickel(II) and cadmium(II) removal from aqueous solution. Response surface methodology based on Box–Behnken design was employed to achieve the optimum removal conditions as well as investigating the effects of some independent variables on the process performance. It was found that the maximum nickel(II) removal achieved was 87.16% under optimum conditions of pH 4.79, biomass concentration of 1,000 mg/L, contact time 70 min and temperature of 25 °C. For cadmium the optimum conditions were defined as pH 4.88, biomass concentration of 1,000 mg/L, contact time 50 min and temperature fixed at 65 °C which resulted in a maximum 75.16% removal. Equilibrium isotherm studies revealed that Freundlich and Langmuir models were more successful for describing nickel(II) and cadmium(II) biosorption data, respectively. The maximum sorption capacities of biomass, q max, for nickel(II) and cadmium(II) were predicted as 250 and 167 mg/g, respectively, by the Langmuir model. The results suggest Enteromorpha seaweed as an eco-friendly and suitable biosorbent for nickel(II) and cadmium(II) removal from aqueous solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
18
审稿时长
>12 weeks
期刊介绍: The Water Quality Research Journal publishes peer-reviewed, scholarly articles on the following general subject areas: Impact of current and emerging contaminants on aquatic ecosystems Aquatic ecology (ecohydrology and ecohydraulics, invasive species, biodiversity, and aquatic species at risk) Conservation and protection of aquatic environments Responsible resource development and water quality (mining, forestry, hydropower, oil and gas) Drinking water, wastewater and stormwater treatment technologies and strategies Impacts and solutions of diffuse pollution (urban and agricultural run-off) on water quality Industrial water quality Used water: Reuse and resource recovery Groundwater quality (management, remediation, fracking, legacy contaminants) Assessment of surface and subsurface water quality Regulations, economics, strategies and policies related to water quality Social science issues in relation to water quality Water quality in remote areas Water quality in cold climates The Water Quality Research Journal is a quarterly publication. It is a forum for original research dealing with the aquatic environment, and should report new and significant findings that advance the understanding of the field. Critical review articles are especially encouraged.
期刊最新文献
Carbon filtration: harnessing cotton's power to purify drinking water Development of an online analyser to meet challenging new discharge limits for mercury in flue gas desulphurisation wastewater Single-wavelength colorimetric tests for low-cost estimation of bacterial activity, chemical oxygen demand, and turbidity in domestic wastewater Evapotranspiration and crop coefficient for Typha latifolia in constructed wetlands Editorial: New Energy for Water Quality Research!
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1