{"title":"自动灌溉系统下裸土水热流的数值模拟","authors":"Mohamed H. Ahmed, S. Gutub","doi":"10.2166/WQRJC.2015.052","DOIUrl":null,"url":null,"abstract":"Modern irrigation techniques use automated systems where irrigation schedules are controlled according to certain criteria. The objective of this study is to numerically estimate irrigation events, water content and temperature distributions, evaporation, drainage, and soil water under closed loop automated irrigation systems of a bare soil. The automated irrigation system is activated and deactivated according to the water content value. The governing equations for transient one-dimensional liquid water flow and heat transfer of unsaturated porous media are applied. The energy balance equation at the soil surface is used as an upper boundary condition based on measured meteorological data of Jeddah City. The results show that the current procedure can be applied to simulate different variables under automated irrigation systems. The water content shows periodic behavior, as well as time lags and decreases in amplitude with soil depth. The timing of applied irrigation has an important impact on evaporation and soil temperature. Applying irrigation water during the daytime leads to increased evaporation. The soil surface temperature decreases suddenly when water is supplied in the afternoon, while a slight increase is observed when irrigation is applied at midnight.","PeriodicalId":54407,"journal":{"name":"Water Quality Research Journal of Canada","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2015-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2166/WQRJC.2015.052","citationCount":"0","resultStr":"{\"title\":\"Numerical simulation of bare soil water and heat flow under an automated irrigation system\",\"authors\":\"Mohamed H. Ahmed, S. Gutub\",\"doi\":\"10.2166/WQRJC.2015.052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern irrigation techniques use automated systems where irrigation schedules are controlled according to certain criteria. The objective of this study is to numerically estimate irrigation events, water content and temperature distributions, evaporation, drainage, and soil water under closed loop automated irrigation systems of a bare soil. The automated irrigation system is activated and deactivated according to the water content value. The governing equations for transient one-dimensional liquid water flow and heat transfer of unsaturated porous media are applied. The energy balance equation at the soil surface is used as an upper boundary condition based on measured meteorological data of Jeddah City. The results show that the current procedure can be applied to simulate different variables under automated irrigation systems. The water content shows periodic behavior, as well as time lags and decreases in amplitude with soil depth. The timing of applied irrigation has an important impact on evaporation and soil temperature. Applying irrigation water during the daytime leads to increased evaporation. The soil surface temperature decreases suddenly when water is supplied in the afternoon, while a slight increase is observed when irrigation is applied at midnight.\",\"PeriodicalId\":54407,\"journal\":{\"name\":\"Water Quality Research Journal of Canada\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2015-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2166/WQRJC.2015.052\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Quality Research Journal of Canada\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2166/WQRJC.2015.052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Quality Research Journal of Canada","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/WQRJC.2015.052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
Numerical simulation of bare soil water and heat flow under an automated irrigation system
Modern irrigation techniques use automated systems where irrigation schedules are controlled according to certain criteria. The objective of this study is to numerically estimate irrigation events, water content and temperature distributions, evaporation, drainage, and soil water under closed loop automated irrigation systems of a bare soil. The automated irrigation system is activated and deactivated according to the water content value. The governing equations for transient one-dimensional liquid water flow and heat transfer of unsaturated porous media are applied. The energy balance equation at the soil surface is used as an upper boundary condition based on measured meteorological data of Jeddah City. The results show that the current procedure can be applied to simulate different variables under automated irrigation systems. The water content shows periodic behavior, as well as time lags and decreases in amplitude with soil depth. The timing of applied irrigation has an important impact on evaporation and soil temperature. Applying irrigation water during the daytime leads to increased evaporation. The soil surface temperature decreases suddenly when water is supplied in the afternoon, while a slight increase is observed when irrigation is applied at midnight.
期刊介绍:
The Water Quality Research Journal publishes peer-reviewed, scholarly articles on the following general subject areas:
Impact of current and emerging contaminants on aquatic ecosystems
Aquatic ecology (ecohydrology and ecohydraulics, invasive species, biodiversity, and aquatic species at risk)
Conservation and protection of aquatic environments
Responsible resource development and water quality (mining, forestry, hydropower, oil and gas)
Drinking water, wastewater and stormwater treatment technologies and strategies
Impacts and solutions of diffuse pollution (urban and agricultural run-off) on water quality
Industrial water quality
Used water: Reuse and resource recovery
Groundwater quality (management, remediation, fracking, legacy contaminants)
Assessment of surface and subsurface water quality
Regulations, economics, strategies and policies related to water quality
Social science issues in relation to water quality
Water quality in remote areas
Water quality in cold climates
The Water Quality Research Journal is a quarterly publication. It is a forum for original research dealing with the aquatic environment, and should report new and significant findings that advance the understanding of the field. Critical review articles are especially encouraged.