{"title":"低溶解氧条件下全规模步进式SBR的性能及微生物群落响应研究","authors":"Heloísa Fernandes, R. Antônio, R. Costa","doi":"10.2166/WQRJC.2016.042","DOIUrl":null,"url":null,"abstract":"A decentralized full-scale sequencing batch reactor (SBR) system for treating wastewater was operated to assess their feasibility and the response of bacterial population dynamic and nutrient removal performance. The reactor was operated under low dissolved oxygen (DO) concentration (0.3–0.7 mgL−1) and an average applied organic load of 0.5 g COD L−1 d−1 (COD: chemical oxygen demand). Removal efficiencies were higher than 70% for both soluble chemical oxygen demand and ammonium, with average effluent concentration of 51 ± 15 mg COD L−1 and 16.0 mg NH4+ L−1. The mixed liquor volatile suspended solids/total suspended solids ratio was 0.9, and the average food/microorganism ratio was 0.3 g COD g VSS−1 d−1 (VSS: volatile suspended solids). The active biomass was composed of 94.9% heterotrophic and 5.1% autotrophic organisms. The most frequently identified were chemoorganoheterotrophic organisms affiliated with Bacteroidetes and Firmicutes, some of them with the capacity to denitrify and grow under low DO concentration. Temperature and sludge withdrawal were important factors in determining nitrification and phosphorus removal rates. The SBR was viable for domestic wastewater treatment and showed that the microbial community greatly influenced its performance. This work can also provide valuable insights into further applications in systems operated under low DO condition.","PeriodicalId":54407,"journal":{"name":"Water Quality Research Journal of Canada","volume":"51 1","pages":"141-152"},"PeriodicalIF":2.0000,"publicationDate":"2016-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2166/WQRJC.2016.042","citationCount":"1","resultStr":"{\"title\":\"Investigation of full-scale step-fed SBR under low dissolved oxygen: performance and microbial community response\",\"authors\":\"Heloísa Fernandes, R. Antônio, R. Costa\",\"doi\":\"10.2166/WQRJC.2016.042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A decentralized full-scale sequencing batch reactor (SBR) system for treating wastewater was operated to assess their feasibility and the response of bacterial population dynamic and nutrient removal performance. The reactor was operated under low dissolved oxygen (DO) concentration (0.3–0.7 mgL−1) and an average applied organic load of 0.5 g COD L−1 d−1 (COD: chemical oxygen demand). Removal efficiencies were higher than 70% for both soluble chemical oxygen demand and ammonium, with average effluent concentration of 51 ± 15 mg COD L−1 and 16.0 mg NH4+ L−1. The mixed liquor volatile suspended solids/total suspended solids ratio was 0.9, and the average food/microorganism ratio was 0.3 g COD g VSS−1 d−1 (VSS: volatile suspended solids). The active biomass was composed of 94.9% heterotrophic and 5.1% autotrophic organisms. The most frequently identified were chemoorganoheterotrophic organisms affiliated with Bacteroidetes and Firmicutes, some of them with the capacity to denitrify and grow under low DO concentration. Temperature and sludge withdrawal were important factors in determining nitrification and phosphorus removal rates. The SBR was viable for domestic wastewater treatment and showed that the microbial community greatly influenced its performance. This work can also provide valuable insights into further applications in systems operated under low DO condition.\",\"PeriodicalId\":54407,\"journal\":{\"name\":\"Water Quality Research Journal of Canada\",\"volume\":\"51 1\",\"pages\":\"141-152\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2016-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2166/WQRJC.2016.042\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Quality Research Journal of Canada\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2166/WQRJC.2016.042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Quality Research Journal of Canada","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/WQRJC.2016.042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 1
摘要
采用分散式全尺寸序批式反应器(SBR)处理废水,对其可行性、细菌种群动态响应及营养物去除性能进行了评价。反应器在低溶解氧(DO)浓度(0.3-0.7 mg / L−1)和平均施加有机负荷0.5 g COD L−1 d−1 (COD:化学需氧量)下运行。出水COD浓度为51±15 mg L−1,NH4+ L−1平均浓度为16.0 mg,对可溶性化学需氧量和铵的去除率均高于70%。混合液挥发性悬浮固体/总悬浮固体比为0.9,食品/微生物平均比为0.3 g COD g VSS−1 d−1 (VSS:挥发性悬浮固体)。活性生物量由94.9%的异养生物和5.1%的自养生物组成。最常见的是与拟杆菌门和厚壁菌门有关的化学有机异养生物,其中一些具有反硝化和在低DO浓度下生长的能力。温度和污泥提取量是决定硝化和除磷率的重要因素。SBR处理生活污水是可行的,并表明微生物群落对其性能有很大影响。这项工作还可以为在低DO条件下运行的系统的进一步应用提供有价值的见解。
Investigation of full-scale step-fed SBR under low dissolved oxygen: performance and microbial community response
A decentralized full-scale sequencing batch reactor (SBR) system for treating wastewater was operated to assess their feasibility and the response of bacterial population dynamic and nutrient removal performance. The reactor was operated under low dissolved oxygen (DO) concentration (0.3–0.7 mgL−1) and an average applied organic load of 0.5 g COD L−1 d−1 (COD: chemical oxygen demand). Removal efficiencies were higher than 70% for both soluble chemical oxygen demand and ammonium, with average effluent concentration of 51 ± 15 mg COD L−1 and 16.0 mg NH4+ L−1. The mixed liquor volatile suspended solids/total suspended solids ratio was 0.9, and the average food/microorganism ratio was 0.3 g COD g VSS−1 d−1 (VSS: volatile suspended solids). The active biomass was composed of 94.9% heterotrophic and 5.1% autotrophic organisms. The most frequently identified were chemoorganoheterotrophic organisms affiliated with Bacteroidetes and Firmicutes, some of them with the capacity to denitrify and grow under low DO concentration. Temperature and sludge withdrawal were important factors in determining nitrification and phosphorus removal rates. The SBR was viable for domestic wastewater treatment and showed that the microbial community greatly influenced its performance. This work can also provide valuable insights into further applications in systems operated under low DO condition.
期刊介绍:
The Water Quality Research Journal publishes peer-reviewed, scholarly articles on the following general subject areas:
Impact of current and emerging contaminants on aquatic ecosystems
Aquatic ecology (ecohydrology and ecohydraulics, invasive species, biodiversity, and aquatic species at risk)
Conservation and protection of aquatic environments
Responsible resource development and water quality (mining, forestry, hydropower, oil and gas)
Drinking water, wastewater and stormwater treatment technologies and strategies
Impacts and solutions of diffuse pollution (urban and agricultural run-off) on water quality
Industrial water quality
Used water: Reuse and resource recovery
Groundwater quality (management, remediation, fracking, legacy contaminants)
Assessment of surface and subsurface water quality
Regulations, economics, strategies and policies related to water quality
Social science issues in relation to water quality
Water quality in remote areas
Water quality in cold climates
The Water Quality Research Journal is a quarterly publication. It is a forum for original research dealing with the aquatic environment, and should report new and significant findings that advance the understanding of the field. Critical review articles are especially encouraged.