{"title":"用于文档级关系提取的去噪图推理网络","authors":"Hailin Wang;Ke Qin;Guiduo Duan;Guangchun Luo","doi":"10.26599/BDMA.2022.9020051","DOIUrl":null,"url":null,"abstract":"Relation Extraction (RE) is to obtain a predefined relation type of two entities mentioned in a piece of text, e.g., a sentence-level or a document-level text. Most existing studies suffer from the noise in the text, and necessary pruning is of great importance. The conventional sentence-level RE task addresses this issue by a denoising method using the shortest dependency path to build a long-range semantic dependency between entity pairs. However, this kind of denoising method is scarce in document-level RE. In this work, we explicitly model a denoised document-level graph based on linguistic knowledge to capture various long-range semantic dependencies among entities. We first formalize a Syntactic Dependency Tree forest (SDT-forest) by introducing the syntax and discourse dependency relation. Then, the Steiner tree algorithm extracts a mention-level denoised graph, Steiner Graph (SG), removing linguistically irrelevant words from the SDT-forest. We then devise a slide residual attention to highlight word-level evidence on text and SG. Finally, the classification is established on the SG to infer the relations of entity pairs. We conduct extensive experiments on three public datasets. The results evidence that our method is beneficial to establish long-range semantic dependency and can improve the classification performance with longer texts.","PeriodicalId":52355,"journal":{"name":"Big Data Mining and Analytics","volume":"6 2","pages":"248-262"},"PeriodicalIF":7.7000,"publicationDate":"2023-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8254253/10026288/10026508.pdf","citationCount":"0","resultStr":"{\"title\":\"Denoising Graph Inference Network for Document-Level Relation Extraction\",\"authors\":\"Hailin Wang;Ke Qin;Guiduo Duan;Guangchun Luo\",\"doi\":\"10.26599/BDMA.2022.9020051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Relation Extraction (RE) is to obtain a predefined relation type of two entities mentioned in a piece of text, e.g., a sentence-level or a document-level text. Most existing studies suffer from the noise in the text, and necessary pruning is of great importance. The conventional sentence-level RE task addresses this issue by a denoising method using the shortest dependency path to build a long-range semantic dependency between entity pairs. However, this kind of denoising method is scarce in document-level RE. In this work, we explicitly model a denoised document-level graph based on linguistic knowledge to capture various long-range semantic dependencies among entities. We first formalize a Syntactic Dependency Tree forest (SDT-forest) by introducing the syntax and discourse dependency relation. Then, the Steiner tree algorithm extracts a mention-level denoised graph, Steiner Graph (SG), removing linguistically irrelevant words from the SDT-forest. We then devise a slide residual attention to highlight word-level evidence on text and SG. Finally, the classification is established on the SG to infer the relations of entity pairs. We conduct extensive experiments on three public datasets. The results evidence that our method is beneficial to establish long-range semantic dependency and can improve the classification performance with longer texts.\",\"PeriodicalId\":52355,\"journal\":{\"name\":\"Big Data Mining and Analytics\",\"volume\":\"6 2\",\"pages\":\"248-262\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2023-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/8254253/10026288/10026508.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Big Data Mining and Analytics\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10026508/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data Mining and Analytics","FirstCategoryId":"1093","ListUrlMain":"https://ieeexplore.ieee.org/document/10026508/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Denoising Graph Inference Network for Document-Level Relation Extraction
Relation Extraction (RE) is to obtain a predefined relation type of two entities mentioned in a piece of text, e.g., a sentence-level or a document-level text. Most existing studies suffer from the noise in the text, and necessary pruning is of great importance. The conventional sentence-level RE task addresses this issue by a denoising method using the shortest dependency path to build a long-range semantic dependency between entity pairs. However, this kind of denoising method is scarce in document-level RE. In this work, we explicitly model a denoised document-level graph based on linguistic knowledge to capture various long-range semantic dependencies among entities. We first formalize a Syntactic Dependency Tree forest (SDT-forest) by introducing the syntax and discourse dependency relation. Then, the Steiner tree algorithm extracts a mention-level denoised graph, Steiner Graph (SG), removing linguistically irrelevant words from the SDT-forest. We then devise a slide residual attention to highlight word-level evidence on text and SG. Finally, the classification is established on the SG to infer the relations of entity pairs. We conduct extensive experiments on three public datasets. The results evidence that our method is beneficial to establish long-range semantic dependency and can improve the classification performance with longer texts.
期刊介绍:
Big Data Mining and Analytics, a publication by Tsinghua University Press, presents groundbreaking research in the field of big data research and its applications. This comprehensive book delves into the exploration and analysis of vast amounts of data from diverse sources to uncover hidden patterns, correlations, insights, and knowledge.
Featuring the latest developments, research issues, and solutions, this book offers valuable insights into the world of big data. It provides a deep understanding of data mining techniques, data analytics, and their practical applications.
Big Data Mining and Analytics has gained significant recognition and is indexed and abstracted in esteemed platforms such as ESCI, EI, Scopus, DBLP Computer Science, Google Scholar, INSPEC, CSCD, DOAJ, CNKI, and more.
With its wealth of information and its ability to transform the way we perceive and utilize data, this book is a must-read for researchers, professionals, and anyone interested in the field of big data analytics.