Mohammed G. Albayati;Jalal Faraj;Amy Thompson;Prathamesh Patil;Ravi Gorthala;Sanguthevar Rajasekaran
{"title":"用于屋顶单元故障检测和诊断的半监督机器学习","authors":"Mohammed G. Albayati;Jalal Faraj;Amy Thompson;Prathamesh Patil;Ravi Gorthala;Sanguthevar Rajasekaran","doi":"10.26599/BDMA.2022.9020015","DOIUrl":null,"url":null,"abstract":"Most heating, ventilation, and air-conditioning (HVAC) systems operate with one or more faults that result in increased energy consumption and that could lead to system failure over time. Today, most building owners are performing reactive maintenance only and may be less concerned or less able to assess the health of the system until catastrophic failure occurs. This is mainly because the building owners do not previously have good tools to detect and diagnose these faults, determine their impact, and act on findings. Commercially available fault detection and diagnostics (FDD) tools have been developed to address this issue and have the potential to reduce equipment downtime, energy costs, maintenance costs, and improve occupant comfort and system reliability. However, many of these tools require an in-depth knowledge of system behavior and thermodynamic principles to interpret the results. In this paper, supervised and semi-supervised machine learning (ML) approaches are applied to datasets collected from an operating system in the field to develop new FDD methods and to help building owners see the value proposition of performing proactive maintenance. The study data was collected from one packaged rooftop unit (RTU) HVAC system running under normal operating conditions at an industrial facility in Connecticut. This paper compares three different approaches for fault classification for a real-time operating RTU using semi-supervised learning, achieving accuracies as high as 95.7% using few-shot learning.","PeriodicalId":52355,"journal":{"name":"Big Data Mining and Analytics","volume":"6 2","pages":"170-184"},"PeriodicalIF":7.7000,"publicationDate":"2023-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8254253/10026288/10026516.pdf","citationCount":"6","resultStr":"{\"title\":\"Semi-Supervised Machine Learning for Fault Detection and Diagnosis of a Rooftop Unit\",\"authors\":\"Mohammed G. Albayati;Jalal Faraj;Amy Thompson;Prathamesh Patil;Ravi Gorthala;Sanguthevar Rajasekaran\",\"doi\":\"10.26599/BDMA.2022.9020015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most heating, ventilation, and air-conditioning (HVAC) systems operate with one or more faults that result in increased energy consumption and that could lead to system failure over time. Today, most building owners are performing reactive maintenance only and may be less concerned or less able to assess the health of the system until catastrophic failure occurs. This is mainly because the building owners do not previously have good tools to detect and diagnose these faults, determine their impact, and act on findings. Commercially available fault detection and diagnostics (FDD) tools have been developed to address this issue and have the potential to reduce equipment downtime, energy costs, maintenance costs, and improve occupant comfort and system reliability. However, many of these tools require an in-depth knowledge of system behavior and thermodynamic principles to interpret the results. In this paper, supervised and semi-supervised machine learning (ML) approaches are applied to datasets collected from an operating system in the field to develop new FDD methods and to help building owners see the value proposition of performing proactive maintenance. The study data was collected from one packaged rooftop unit (RTU) HVAC system running under normal operating conditions at an industrial facility in Connecticut. This paper compares three different approaches for fault classification for a real-time operating RTU using semi-supervised learning, achieving accuracies as high as 95.7% using few-shot learning.\",\"PeriodicalId\":52355,\"journal\":{\"name\":\"Big Data Mining and Analytics\",\"volume\":\"6 2\",\"pages\":\"170-184\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2023-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/8254253/10026288/10026516.pdf\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Big Data Mining and Analytics\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10026516/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data Mining and Analytics","FirstCategoryId":"1093","ListUrlMain":"https://ieeexplore.ieee.org/document/10026516/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Semi-Supervised Machine Learning for Fault Detection and Diagnosis of a Rooftop Unit
Most heating, ventilation, and air-conditioning (HVAC) systems operate with one or more faults that result in increased energy consumption and that could lead to system failure over time. Today, most building owners are performing reactive maintenance only and may be less concerned or less able to assess the health of the system until catastrophic failure occurs. This is mainly because the building owners do not previously have good tools to detect and diagnose these faults, determine their impact, and act on findings. Commercially available fault detection and diagnostics (FDD) tools have been developed to address this issue and have the potential to reduce equipment downtime, energy costs, maintenance costs, and improve occupant comfort and system reliability. However, many of these tools require an in-depth knowledge of system behavior and thermodynamic principles to interpret the results. In this paper, supervised and semi-supervised machine learning (ML) approaches are applied to datasets collected from an operating system in the field to develop new FDD methods and to help building owners see the value proposition of performing proactive maintenance. The study data was collected from one packaged rooftop unit (RTU) HVAC system running under normal operating conditions at an industrial facility in Connecticut. This paper compares three different approaches for fault classification for a real-time operating RTU using semi-supervised learning, achieving accuracies as high as 95.7% using few-shot learning.
期刊介绍:
Big Data Mining and Analytics, a publication by Tsinghua University Press, presents groundbreaking research in the field of big data research and its applications. This comprehensive book delves into the exploration and analysis of vast amounts of data from diverse sources to uncover hidden patterns, correlations, insights, and knowledge.
Featuring the latest developments, research issues, and solutions, this book offers valuable insights into the world of big data. It provides a deep understanding of data mining techniques, data analytics, and their practical applications.
Big Data Mining and Analytics has gained significant recognition and is indexed and abstracted in esteemed platforms such as ESCI, EI, Scopus, DBLP Computer Science, Google Scholar, INSPEC, CSCD, DOAJ, CNKI, and more.
With its wealth of information and its ability to transform the way we perceive and utilize data, this book is a must-read for researchers, professionals, and anyone interested in the field of big data analytics.