{"title":"认知无线电网络中协作频谱感知信道选择算法的研究分析","authors":"J. Tlouyamma;M. Velempini","doi":"10.23919/SAIEE.2021.9340532","DOIUrl":null,"url":null,"abstract":"The proliferation of wireless mobile devices has led to a number of challenges in mobile data communication. The world is experiencinganincreasingusage of finite spectrum bands for social media and other data communication services. It is due to this high usage that the Federal Communications Commission(FCC) sought to open up some spectrum bands to be used opportunistically by secondary users (SUs). However, the coexistence of Primary Users (PUs) and SUs may cause interference which leads to wastage of spectrum resources. This study investigates the impact of interferences between PUs and SUs. To ensure higher detection of PU signal, a cooperative rule was used to decide which SU to share and makea final decision about the availability of the spectrum band. To maximize the throughput of SU, a maximum likelihood function was designed to reduce delays in searching for the next available channel for data transmission. To discover more transmission opportunities and ensuring that a good number of free channels are detected, a parallel sensing technique was employed. Matlabwas used to simulate and generate the results in a distributed cognitive radio environment. The proposed extended generalizedpredictive channel selection algorithm (EXGPCSA) outperformed otherschemes in literature in terms of throughput, service timeandprobability of detection.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.23919/SAIEE.2021.9340532","citationCount":"6","resultStr":"{\"title\":\"Investigative analysis of channel selection algorithms in cooperative spectrum sensing in cognitive radio networks\",\"authors\":\"J. Tlouyamma;M. Velempini\",\"doi\":\"10.23919/SAIEE.2021.9340532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The proliferation of wireless mobile devices has led to a number of challenges in mobile data communication. The world is experiencinganincreasingusage of finite spectrum bands for social media and other data communication services. It is due to this high usage that the Federal Communications Commission(FCC) sought to open up some spectrum bands to be used opportunistically by secondary users (SUs). However, the coexistence of Primary Users (PUs) and SUs may cause interference which leads to wastage of spectrum resources. This study investigates the impact of interferences between PUs and SUs. To ensure higher detection of PU signal, a cooperative rule was used to decide which SU to share and makea final decision about the availability of the spectrum band. To maximize the throughput of SU, a maximum likelihood function was designed to reduce delays in searching for the next available channel for data transmission. To discover more transmission opportunities and ensuring that a good number of free channels are detected, a parallel sensing technique was employed. Matlabwas used to simulate and generate the results in a distributed cognitive radio environment. The proposed extended generalizedpredictive channel selection algorithm (EXGPCSA) outperformed otherschemes in literature in terms of throughput, service timeandprobability of detection.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.23919/SAIEE.2021.9340532\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9340532/\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9340532/","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Investigative analysis of channel selection algorithms in cooperative spectrum sensing in cognitive radio networks
The proliferation of wireless mobile devices has led to a number of challenges in mobile data communication. The world is experiencinganincreasingusage of finite spectrum bands for social media and other data communication services. It is due to this high usage that the Federal Communications Commission(FCC) sought to open up some spectrum bands to be used opportunistically by secondary users (SUs). However, the coexistence of Primary Users (PUs) and SUs may cause interference which leads to wastage of spectrum resources. This study investigates the impact of interferences between PUs and SUs. To ensure higher detection of PU signal, a cooperative rule was used to decide which SU to share and makea final decision about the availability of the spectrum band. To maximize the throughput of SU, a maximum likelihood function was designed to reduce delays in searching for the next available channel for data transmission. To discover more transmission opportunities and ensuring that a good number of free channels are detected, a parallel sensing technique was employed. Matlabwas used to simulate and generate the results in a distributed cognitive radio environment. The proposed extended generalizedpredictive channel selection algorithm (EXGPCSA) outperformed otherschemes in literature in terms of throughput, service timeandprobability of detection.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.