农业流域水土流失产沙地理信息系统与过程建模

G. Puno, R. Marin, R. Puno, A. G. Toledo-Bruno
{"title":"农业流域水土流失产沙地理信息系统与过程建模","authors":"G. Puno, R. Marin, R. Puno, A. G. Toledo-Bruno","doi":"10.22034/GJESM.2021.01.01","DOIUrl":null,"url":null,"abstract":"BACKGROUND AND OBJECTIVES: The study explored the capability of the geographic information system interface for the water erosion prediction project, a process-based model, to predict and visualize the specific location of soil erosion and sediment yield from the agricultural watershed of Taganibong. METHODS: The method involved the preparation of the four input files corresponding to climate, slope, land management, and soil properties. Climate file processing was through the use of a breakpoint climate data generator. The team had calibrated and validated the model using the observed data from the three monitoring sites. FINDINGS: Model evaluation showed a statistically acceptable performance with coefficient of determination values of 0.64 (probability value = 0.042), 0.85 (probability value = 0.000), and 0.69 (probability value = 0.001) at 95% level, for monitoring sites 1, 2, and 3, respectively. A further test revealed a statistically satisfactory model performance with root mean square error-observations standard deviation ratio, Nash-Sutcliffe efficiency, and percent bias of 0.62, 0.61, and 44.30, respectively, for monitoring site 1; 0.65, 0.56, and 25.60, respectively, for monitoring site 2; and 0.60, 0.65, and 27.90, respectively, for monitoring site 3. At a watershed scale, the model predicted the erosion and sediment yield at 89 tons per hectare per year and 22 tons per hectare per year, respectively, which are far beyond the erosion tolerance of 10 tons per hectare per year. The sediment delivery ratio of 0.20 accounts for a total of 126,390 tons of sediments that accumulated downstream in a year. CONCLUSION: The model generated maps that visualize a site-specific hillslope, which is the source of erosion and sedimentation. The study enables the researchers to provide information helpful in the formulation of a sound policy statement for sustainable soil management in the agricultural watershed of Taganibong.","PeriodicalId":46495,"journal":{"name":"GLOBAL JOURNAL OF ENVIRONMENTAL SCIENCE AND MANAGEMENT-GJESM","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Geographic information system and process-based modeling of soil erosion and sediment yield in agricultural watershed\",\"authors\":\"G. Puno, R. Marin, R. Puno, A. G. Toledo-Bruno\",\"doi\":\"10.22034/GJESM.2021.01.01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"BACKGROUND AND OBJECTIVES: The study explored the capability of the geographic information system interface for the water erosion prediction project, a process-based model, to predict and visualize the specific location of soil erosion and sediment yield from the agricultural watershed of Taganibong. METHODS: The method involved the preparation of the four input files corresponding to climate, slope, land management, and soil properties. Climate file processing was through the use of a breakpoint climate data generator. The team had calibrated and validated the model using the observed data from the three monitoring sites. FINDINGS: Model evaluation showed a statistically acceptable performance with coefficient of determination values of 0.64 (probability value = 0.042), 0.85 (probability value = 0.000), and 0.69 (probability value = 0.001) at 95% level, for monitoring sites 1, 2, and 3, respectively. A further test revealed a statistically satisfactory model performance with root mean square error-observations standard deviation ratio, Nash-Sutcliffe efficiency, and percent bias of 0.62, 0.61, and 44.30, respectively, for monitoring site 1; 0.65, 0.56, and 25.60, respectively, for monitoring site 2; and 0.60, 0.65, and 27.90, respectively, for monitoring site 3. At a watershed scale, the model predicted the erosion and sediment yield at 89 tons per hectare per year and 22 tons per hectare per year, respectively, which are far beyond the erosion tolerance of 10 tons per hectare per year. The sediment delivery ratio of 0.20 accounts for a total of 126,390 tons of sediments that accumulated downstream in a year. CONCLUSION: The model generated maps that visualize a site-specific hillslope, which is the source of erosion and sedimentation. The study enables the researchers to provide information helpful in the formulation of a sound policy statement for sustainable soil management in the agricultural watershed of Taganibong.\",\"PeriodicalId\":46495,\"journal\":{\"name\":\"GLOBAL JOURNAL OF ENVIRONMENTAL SCIENCE AND MANAGEMENT-GJESM\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GLOBAL JOURNAL OF ENVIRONMENTAL SCIENCE AND MANAGEMENT-GJESM\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22034/GJESM.2021.01.01\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GLOBAL JOURNAL OF ENVIRONMENTAL SCIENCE AND MANAGEMENT-GJESM","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/GJESM.2021.01.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 2

摘要

背景与目的:研究基于过程的水蚀预测模型——地理信息系统接口对塔格尼堡农业流域土壤侵蚀产沙的具体位置进行预测和可视化的能力。方法:编制气候、坡度、土地管理、土壤性质4个输入文件。气候文件处理是通过使用断点气候数据生成器。该小组利用三个监测点的观测数据对模型进行了校准和验证。结果:模型评价显示具有统计学上可接受的性能,在95%水平上,监测站点1、2和3的决定系数分别为0.64(概率值= 0.042)、0.85(概率值= 0.000)和0.69(概率值= 0.001)。进一步的检验显示,监测站点1的均方根误差-观测标准差比、Nash-Sutcliffe效率和百分比偏差分别为0.62、0.61和44.30,具有统计学上令人满意的模型性能;监测点2分别为0.65、0.56、25.60;监测点3分别为0.60、0.65、27.90。在流域尺度上,该模型预测的侵蚀产沙量分别为89吨/公顷/年和22吨/公顷/年,远远超过了10吨/公顷/年的侵蚀容忍度。输沙比为0.20,全年下游累计输沙126390吨。结论:该模型生成的地图显示了特定地点的山坡,这是侵蚀和沉积的来源。该研究使研究人员能够提供有助于制定合理的政策声明,以促进塔格尼蓬农业流域的可持续土壤管理的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Geographic information system and process-based modeling of soil erosion and sediment yield in agricultural watershed
BACKGROUND AND OBJECTIVES: The study explored the capability of the geographic information system interface for the water erosion prediction project, a process-based model, to predict and visualize the specific location of soil erosion and sediment yield from the agricultural watershed of Taganibong. METHODS: The method involved the preparation of the four input files corresponding to climate, slope, land management, and soil properties. Climate file processing was through the use of a breakpoint climate data generator. The team had calibrated and validated the model using the observed data from the three monitoring sites. FINDINGS: Model evaluation showed a statistically acceptable performance with coefficient of determination values of 0.64 (probability value = 0.042), 0.85 (probability value = 0.000), and 0.69 (probability value = 0.001) at 95% level, for monitoring sites 1, 2, and 3, respectively. A further test revealed a statistically satisfactory model performance with root mean square error-observations standard deviation ratio, Nash-Sutcliffe efficiency, and percent bias of 0.62, 0.61, and 44.30, respectively, for monitoring site 1; 0.65, 0.56, and 25.60, respectively, for monitoring site 2; and 0.60, 0.65, and 27.90, respectively, for monitoring site 3. At a watershed scale, the model predicted the erosion and sediment yield at 89 tons per hectare per year and 22 tons per hectare per year, respectively, which are far beyond the erosion tolerance of 10 tons per hectare per year. The sediment delivery ratio of 0.20 accounts for a total of 126,390 tons of sediments that accumulated downstream in a year. CONCLUSION: The model generated maps that visualize a site-specific hillslope, which is the source of erosion and sedimentation. The study enables the researchers to provide information helpful in the formulation of a sound policy statement for sustainable soil management in the agricultural watershed of Taganibong.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.90
自引率
2.90%
发文量
11
审稿时长
8 weeks
期刊最新文献
Urban green space during the Coronavirus disease pandemic with regard to the socioeconomic characteristics Healthcare waste characteristics and management in regional hospital and private clinic Environmental effect of the Coronavirus-19 determinants and lockdown on carbon emissions Carbon footprint and cost analysis of a bicycle lane in a municipality Microplastic abundance and distribution in surface water and sediment collected from the coastal area
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1