使用超启发式的智能系统设计

Q3 Social Sciences South African Computer Journal Pub Date : 2015-07-11 DOI:10.18489/SACJ.V56I1.268
N. Pillay
{"title":"使用超启发式的智能系统设计","authors":"N. Pillay","doi":"10.18489/SACJ.V56I1.268","DOIUrl":null,"url":null,"abstract":"Determining the most appropriate search method or artificial intelligence technique to solve a problem is not always evident and usually requires implementation of the different approaches to ascertain this. In some instances a single approach may not be sufficient and hybridization of methods may be needed to find a solution. This process can be time consuming. The paper proposes the use of hyper-heuristics as a means of identifying which method or combination of approaches is needed to solve a problem. The research presented forms part of a larger initiative aimed at using hyper-heuristics to develop intelligent hybrid systems. As an initial step in this direction, this paper investigates this for classical artificial intelligence uninformed and informed search methods, namely depth first search, breadth first search, best first search, hill-climbing and the A* algorithm. The hyper-heuristic determines the search or combination of searches to use to solve the problem. An evolutionary algorithm hyper-heuristic is implemented for this purpose and its performance is evaluated in solving the 8-Puzzle, Towers of Hanoi and Blocks World problems. The hyper-heuristic employs a generational evolutionary algorithm which iteratively refines an initial population using tournament selection to select parents, which the mutation and crossover operators are applied to for regeneration. The hyper-heuristic was able to identify a search or combination of searches to produce solutions for the twenty 8-Puzzle, five Towers of Hanoi and five Blocks World problems. Furthermore, admissible solutions were produced for all problem instances.","PeriodicalId":55859,"journal":{"name":"South African Computer Journal","volume":"56 1","pages":"107-119"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Intelligent system design using hyper-heuristics\",\"authors\":\"N. Pillay\",\"doi\":\"10.18489/SACJ.V56I1.268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Determining the most appropriate search method or artificial intelligence technique to solve a problem is not always evident and usually requires implementation of the different approaches to ascertain this. In some instances a single approach may not be sufficient and hybridization of methods may be needed to find a solution. This process can be time consuming. The paper proposes the use of hyper-heuristics as a means of identifying which method or combination of approaches is needed to solve a problem. The research presented forms part of a larger initiative aimed at using hyper-heuristics to develop intelligent hybrid systems. As an initial step in this direction, this paper investigates this for classical artificial intelligence uninformed and informed search methods, namely depth first search, breadth first search, best first search, hill-climbing and the A* algorithm. The hyper-heuristic determines the search or combination of searches to use to solve the problem. An evolutionary algorithm hyper-heuristic is implemented for this purpose and its performance is evaluated in solving the 8-Puzzle, Towers of Hanoi and Blocks World problems. The hyper-heuristic employs a generational evolutionary algorithm which iteratively refines an initial population using tournament selection to select parents, which the mutation and crossover operators are applied to for regeneration. The hyper-heuristic was able to identify a search or combination of searches to produce solutions for the twenty 8-Puzzle, five Towers of Hanoi and five Blocks World problems. Furthermore, admissible solutions were produced for all problem instances.\",\"PeriodicalId\":55859,\"journal\":{\"name\":\"South African Computer Journal\",\"volume\":\"56 1\",\"pages\":\"107-119\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"South African Computer Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18489/SACJ.V56I1.268\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"South African Computer Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18489/SACJ.V56I1.268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 2

摘要

确定最合适的搜索方法或人工智能技术来解决问题并不总是显而易见的,通常需要实现不同的方法来确定这一点。在某些情况下,单一的方法可能是不够的,可能需要混合的方法来找到一个解决方案。这个过程可能很耗时。本文建议使用超启发式作为确定解决问题所需的方法或方法组合的手段。这项研究是一项更大的计划的一部分,旨在利用超启发式技术开发智能混合系统。作为这个方向的第一步,本文研究了经典的人工智能无信息搜索和知情搜索方法,即深度优先搜索、广度优先搜索、最佳优先搜索、爬坡和A*算法。超启发式算法确定要使用的搜索或搜索组合来解决问题。为此,实现了一种超启发式进化算法,并在解决8-Puzzle, Towers of Hanoi和Blocks World问题中对其性能进行了评估。超启发式算法采用分代进化算法,通过比赛选择迭代优化初始种群,选择亲本,并应用突变和交叉算子进行再生。超启发式能够识别搜索或搜索组合,以产生解决方案的二十八个谜题,五个河内塔和五个街区世界的问题。此外,为所有问题实例生成了可接受的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Intelligent system design using hyper-heuristics
Determining the most appropriate search method or artificial intelligence technique to solve a problem is not always evident and usually requires implementation of the different approaches to ascertain this. In some instances a single approach may not be sufficient and hybridization of methods may be needed to find a solution. This process can be time consuming. The paper proposes the use of hyper-heuristics as a means of identifying which method or combination of approaches is needed to solve a problem. The research presented forms part of a larger initiative aimed at using hyper-heuristics to develop intelligent hybrid systems. As an initial step in this direction, this paper investigates this for classical artificial intelligence uninformed and informed search methods, namely depth first search, breadth first search, best first search, hill-climbing and the A* algorithm. The hyper-heuristic determines the search or combination of searches to use to solve the problem. An evolutionary algorithm hyper-heuristic is implemented for this purpose and its performance is evaluated in solving the 8-Puzzle, Towers of Hanoi and Blocks World problems. The hyper-heuristic employs a generational evolutionary algorithm which iteratively refines an initial population using tournament selection to select parents, which the mutation and crossover operators are applied to for regeneration. The hyper-heuristic was able to identify a search or combination of searches to produce solutions for the twenty 8-Puzzle, five Towers of Hanoi and five Blocks World problems. Furthermore, admissible solutions were produced for all problem instances.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
South African Computer Journal
South African Computer Journal Social Sciences-Education
CiteScore
1.30
自引率
0.00%
发文量
10
审稿时长
24 weeks
期刊介绍: The South African Computer Journal is specialist ICT academic journal, accredited by the South African Department of Higher Education and Training SACJ publishes research articles, viewpoints and communications in English in Computer Science and Information Systems.
期刊最新文献
Virtual learner experience (VLX) Editorial: A new era for SACJ Obituary – Conrad Mueller The Influence of Change Management Process on Cloud Transitioning Online Platform Privacy Policies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1