用人对关系理解社会关系

IF 7.7 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Big Data Mining and Analytics Pub Date : 2022-01-25 DOI:10.26599/BDMA.2021.9020022
Hang Zhao;Haicheng Chen;Leilai Li;Hai Wan
{"title":"用人对关系理解社会关系","authors":"Hang Zhao;Haicheng Chen;Leilai Li;Hai Wan","doi":"10.26599/BDMA.2021.9020022","DOIUrl":null,"url":null,"abstract":"Social relationship understanding infers existing social relationships among individuals in a given scenario, which has been demonstrated to have a wide range of practical value in reality. However, existing methods infer the social relationship of each person pair in isolation, without considering the context-aware information for person pairs in the same scenario. The context-aware information for person pairs exists extensively in reality, that is, the social relationships of different person pairs in a simple scenario are always related to each other. For instance, if most of the person pairs in a simple scenario have the same social relationship, \"friends\", then the other pairs have a high probability of being \"friends\" or other similar coarse-level relationships, such as \"intimate\". This context-aware information should thus be considered in social relationship understanding. Therefore, this paper proposes a novel end-to-end trainable Person-Pair Relation Network (PPRN), which is a GRU-based graph inference network, to first extract the visual and position information as the person-pair feature information, then enable it to transfer on a fully-connected social graph, and finally utilizes different aggregators to collect different kinds of person-pair information. Unlike existing methods, the method—with its message passing mechanism in the graph model—can infer the social relationship of each person-pair in a joint way (i.e., not in isolation). Extensive experiments on People In Social Context (PISC)- and People In Photo Album (PIPA)-relation datasets show the superiority of our method compared to other methods.","PeriodicalId":52355,"journal":{"name":"Big Data Mining and Analytics","volume":"5 2","pages":"120-129"},"PeriodicalIF":7.7000,"publicationDate":"2022-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8254253/9691293/09691299.pdf","citationCount":"2","resultStr":"{\"title\":\"Understanding social relationships with person-pair relations\",\"authors\":\"Hang Zhao;Haicheng Chen;Leilai Li;Hai Wan\",\"doi\":\"10.26599/BDMA.2021.9020022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Social relationship understanding infers existing social relationships among individuals in a given scenario, which has been demonstrated to have a wide range of practical value in reality. However, existing methods infer the social relationship of each person pair in isolation, without considering the context-aware information for person pairs in the same scenario. The context-aware information for person pairs exists extensively in reality, that is, the social relationships of different person pairs in a simple scenario are always related to each other. For instance, if most of the person pairs in a simple scenario have the same social relationship, \\\"friends\\\", then the other pairs have a high probability of being \\\"friends\\\" or other similar coarse-level relationships, such as \\\"intimate\\\". This context-aware information should thus be considered in social relationship understanding. Therefore, this paper proposes a novel end-to-end trainable Person-Pair Relation Network (PPRN), which is a GRU-based graph inference network, to first extract the visual and position information as the person-pair feature information, then enable it to transfer on a fully-connected social graph, and finally utilizes different aggregators to collect different kinds of person-pair information. Unlike existing methods, the method—with its message passing mechanism in the graph model—can infer the social relationship of each person-pair in a joint way (i.e., not in isolation). Extensive experiments on People In Social Context (PISC)- and People In Photo Album (PIPA)-relation datasets show the superiority of our method compared to other methods.\",\"PeriodicalId\":52355,\"journal\":{\"name\":\"Big Data Mining and Analytics\",\"volume\":\"5 2\",\"pages\":\"120-129\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2022-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/8254253/9691293/09691299.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Big Data Mining and Analytics\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9691299/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data Mining and Analytics","FirstCategoryId":"1093","ListUrlMain":"https://ieeexplore.ieee.org/document/9691299/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 2

摘要

社会关系理解推断出在给定场景中个体之间存在的社会关系,这在现实中具有广泛的实用价值。然而,现有的方法孤立地推断每个人对的社会关系,而没有考虑同一场景中人对的上下文感知信息。人对的上下文感知信息在现实中广泛存在,也就是说,在一个简单的场景中,不同人对的社会关系总是相互关联的。例如,如果在一个简单的场景中,大多数人对都有相同的社会关系,即“朋友”,那么其他人对很有可能是“朋友”或其他类似的粗略关系,如“亲密”。因此,在理解社会关系时,应该考虑这种上下文感知信息。因此,本文提出了一种新的端到端可训练的人对关系网络(PPRN),这是一种基于GRU的图推理网络,它首先提取视觉和位置信息作为人对特征信息,然后使其能够在完全连接的社交图上传递,最后利用不同的聚合器来收集不同类型的人对信息。与现有的方法不同,该方法在图模型中具有消息传递机制,可以以联合的方式(即,不是孤立的)推断每个人对的社会关系。在社交环境中的人(PISC)和相册中的人关系数据集上进行的大量实验表明,与其他方法相比,我们的方法具有优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Understanding social relationships with person-pair relations
Social relationship understanding infers existing social relationships among individuals in a given scenario, which has been demonstrated to have a wide range of practical value in reality. However, existing methods infer the social relationship of each person pair in isolation, without considering the context-aware information for person pairs in the same scenario. The context-aware information for person pairs exists extensively in reality, that is, the social relationships of different person pairs in a simple scenario are always related to each other. For instance, if most of the person pairs in a simple scenario have the same social relationship, "friends", then the other pairs have a high probability of being "friends" or other similar coarse-level relationships, such as "intimate". This context-aware information should thus be considered in social relationship understanding. Therefore, this paper proposes a novel end-to-end trainable Person-Pair Relation Network (PPRN), which is a GRU-based graph inference network, to first extract the visual and position information as the person-pair feature information, then enable it to transfer on a fully-connected social graph, and finally utilizes different aggregators to collect different kinds of person-pair information. Unlike existing methods, the method—with its message passing mechanism in the graph model—can infer the social relationship of each person-pair in a joint way (i.e., not in isolation). Extensive experiments on People In Social Context (PISC)- and People In Photo Album (PIPA)-relation datasets show the superiority of our method compared to other methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Big Data Mining and Analytics
Big Data Mining and Analytics Computer Science-Computer Science Applications
CiteScore
20.90
自引率
2.20%
发文量
84
期刊介绍: Big Data Mining and Analytics, a publication by Tsinghua University Press, presents groundbreaking research in the field of big data research and its applications. This comprehensive book delves into the exploration and analysis of vast amounts of data from diverse sources to uncover hidden patterns, correlations, insights, and knowledge. Featuring the latest developments, research issues, and solutions, this book offers valuable insights into the world of big data. It provides a deep understanding of data mining techniques, data analytics, and their practical applications. Big Data Mining and Analytics has gained significant recognition and is indexed and abstracted in esteemed platforms such as ESCI, EI, Scopus, DBLP Computer Science, Google Scholar, INSPEC, CSCD, DOAJ, CNKI, and more. With its wealth of information and its ability to transform the way we perceive and utilize data, this book is a must-read for researchers, professionals, and anyone interested in the field of big data analytics.
期刊最新文献
Contents Front Cover Incremental Data Stream Classification with Adaptive Multi-Task Multi-View Learning Attention-Based CNN Fusion Model for Emotion Recognition During Walking Using Discrete Wavelet Transform on EEG and Inertial Signals Gender-Based Analysis of User Reactions to Facebook Posts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1