机器学习在大数据分析中的应用、挑战和前景

IF 7.7 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Big Data Mining and Analytics Pub Date : 2022-01-25 DOI:10.26599/BDMA.2021.9020028
Isaac Kofi Nti;Juanita Ahia Quarcoo;Justice Aning;Godfred Kusi Fosu
{"title":"机器学习在大数据分析中的应用、挑战和前景","authors":"Isaac Kofi Nti;Juanita Ahia Quarcoo;Justice Aning;Godfred Kusi Fosu","doi":"10.26599/BDMA.2021.9020028","DOIUrl":null,"url":null,"abstract":"The availability of digital technology in the hands of every citizenry worldwide makes an available unprecedented massive amount of data. The capability to process these gigantic amounts of data in real-time with Big Data Analytics (BDA) tools and Machine Learning (ML) algorithms carries many paybacks. However, the high number of free BDA tools, platforms, and data mining tools makes it challenging to select the appropriate one for the right task. This paper presents a comprehensive mini-literature review of ML in BDA, using a keyword search; a total of 1512 published articles was identified. The articles were screened to 140 based on the study proposed novel taxonomy. The study outcome shows that deep neural networks (15%), support vector machines (15%), artificial neural networks (14%), decision trees (12%), and ensemble learning techniques (11%) are widely applied in BDA. The related applications fields, challenges, and most importantly the openings for future research, are detailed.","PeriodicalId":52355,"journal":{"name":"Big Data Mining and Analytics","volume":"5 2","pages":"81-97"},"PeriodicalIF":7.7000,"publicationDate":"2022-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8254253/9691293/09691296.pdf","citationCount":"24","resultStr":"{\"title\":\"A mini-review of machine learning in big data analytics: Applications, challenges, and prospects\",\"authors\":\"Isaac Kofi Nti;Juanita Ahia Quarcoo;Justice Aning;Godfred Kusi Fosu\",\"doi\":\"10.26599/BDMA.2021.9020028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The availability of digital technology in the hands of every citizenry worldwide makes an available unprecedented massive amount of data. The capability to process these gigantic amounts of data in real-time with Big Data Analytics (BDA) tools and Machine Learning (ML) algorithms carries many paybacks. However, the high number of free BDA tools, platforms, and data mining tools makes it challenging to select the appropriate one for the right task. This paper presents a comprehensive mini-literature review of ML in BDA, using a keyword search; a total of 1512 published articles was identified. The articles were screened to 140 based on the study proposed novel taxonomy. The study outcome shows that deep neural networks (15%), support vector machines (15%), artificial neural networks (14%), decision trees (12%), and ensemble learning techniques (11%) are widely applied in BDA. The related applications fields, challenges, and most importantly the openings for future research, are detailed.\",\"PeriodicalId\":52355,\"journal\":{\"name\":\"Big Data Mining and Analytics\",\"volume\":\"5 2\",\"pages\":\"81-97\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2022-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/8254253/9691293/09691296.pdf\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Big Data Mining and Analytics\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9691296/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data Mining and Analytics","FirstCategoryId":"1093","ListUrlMain":"https://ieeexplore.ieee.org/document/9691296/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 24

摘要

数字技术掌握在全世界每一位公民手中,这就提供了前所未有的海量数据。使用大数据分析(BDA)工具和机器学习(ML)算法实时处理这些海量数据的能力带来了许多回报。然而,大量免费的BDA工具、平台和数据挖掘工具使得为正确的任务选择合适的工具变得很有挑战性。本文使用关键词搜索对BDA中的ML进行了全面的小型文献综述;共发现1512篇已发表的文章。根据研究提出的新分类法,这些文章被筛选到140篇。研究结果表明,深度神经网络(15%)、支持向量机(15%),人工神经网络(14%)、决策树(12%)和集成学习技术(11%)在BDA中得到了广泛应用。详细介绍了相关的应用领域、挑战,最重要的是未来研究的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A mini-review of machine learning in big data analytics: Applications, challenges, and prospects
The availability of digital technology in the hands of every citizenry worldwide makes an available unprecedented massive amount of data. The capability to process these gigantic amounts of data in real-time with Big Data Analytics (BDA) tools and Machine Learning (ML) algorithms carries many paybacks. However, the high number of free BDA tools, platforms, and data mining tools makes it challenging to select the appropriate one for the right task. This paper presents a comprehensive mini-literature review of ML in BDA, using a keyword search; a total of 1512 published articles was identified. The articles were screened to 140 based on the study proposed novel taxonomy. The study outcome shows that deep neural networks (15%), support vector machines (15%), artificial neural networks (14%), decision trees (12%), and ensemble learning techniques (11%) are widely applied in BDA. The related applications fields, challenges, and most importantly the openings for future research, are detailed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Big Data Mining and Analytics
Big Data Mining and Analytics Computer Science-Computer Science Applications
CiteScore
20.90
自引率
2.20%
发文量
84
期刊介绍: Big Data Mining and Analytics, a publication by Tsinghua University Press, presents groundbreaking research in the field of big data research and its applications. This comprehensive book delves into the exploration and analysis of vast amounts of data from diverse sources to uncover hidden patterns, correlations, insights, and knowledge. Featuring the latest developments, research issues, and solutions, this book offers valuable insights into the world of big data. It provides a deep understanding of data mining techniques, data analytics, and their practical applications. Big Data Mining and Analytics has gained significant recognition and is indexed and abstracted in esteemed platforms such as ESCI, EI, Scopus, DBLP Computer Science, Google Scholar, INSPEC, CSCD, DOAJ, CNKI, and more. With its wealth of information and its ability to transform the way we perceive and utilize data, this book is a must-read for researchers, professionals, and anyone interested in the field of big data analytics.
期刊最新文献
Contents Front Cover Incremental Data Stream Classification with Adaptive Multi-Task Multi-View Learning Attention-Based CNN Fusion Model for Emotion Recognition During Walking Using Discrete Wavelet Transform on EEG and Inertial Signals Gender-Based Analysis of User Reactions to Facebook Posts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1