可重构平台上持续周期和动态非周期实时任务的协同调度

Sangeet Saha;Arnab Sarkar;Amlan Chakrabarti;Ranjan Ghosh
{"title":"可重构平台上持续周期和动态非周期实时任务的协同调度","authors":"Sangeet Saha;Arnab Sarkar;Amlan Chakrabarti;Ranjan Ghosh","doi":"10.1109/TMSCS.2017.2691701","DOIUrl":null,"url":null,"abstract":"As task preemption/relocation with acceptably low overheads become a reality in today's reconfigurable FPGAs, they are starting to show bright prospects as platforms for executing performance critical task sets while allowing high resource utilization. Many performance sensitive real-time systems including those in automotive and avionics systems, chemical reactors, etc., often execute a set of persistent periodic safety critical control tasks along with dynamic event driven aperiodic tasks. This work presents a co-scheduling framework for the combined execution of such periodic and aperiodic real-time tasks on fully and run-time partially reconfigurable platforms. Specifically, we present an admission control strategy and preemptive scheduling methodology for dynamic aperiodic tasks in the presence of a set of persistent periodic tasks such that aperiodic task rejections may be minimized, thus resulting in high resource utilization. We used the 2D slotted area model where the floor of the FPGA is assumed to be statically equipartitioned into a set of tiles in which any arbitrary task may be feasibly mapped. The experimental results reveal that the proposed scheduling strategies are able to achieve high resource utilization with low task rejection rates over various simulation scenarios.","PeriodicalId":100643,"journal":{"name":"IEEE Transactions on Multi-Scale Computing Systems","volume":"4 1","pages":"41-54"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TMSCS.2017.2691701","citationCount":"14","resultStr":"{\"title\":\"Co-Scheduling Persistent Periodic and Dynamic Aperiodic Real-Time Tasks on Reconfigurable Platforms\",\"authors\":\"Sangeet Saha;Arnab Sarkar;Amlan Chakrabarti;Ranjan Ghosh\",\"doi\":\"10.1109/TMSCS.2017.2691701\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As task preemption/relocation with acceptably low overheads become a reality in today's reconfigurable FPGAs, they are starting to show bright prospects as platforms for executing performance critical task sets while allowing high resource utilization. Many performance sensitive real-time systems including those in automotive and avionics systems, chemical reactors, etc., often execute a set of persistent periodic safety critical control tasks along with dynamic event driven aperiodic tasks. This work presents a co-scheduling framework for the combined execution of such periodic and aperiodic real-time tasks on fully and run-time partially reconfigurable platforms. Specifically, we present an admission control strategy and preemptive scheduling methodology for dynamic aperiodic tasks in the presence of a set of persistent periodic tasks such that aperiodic task rejections may be minimized, thus resulting in high resource utilization. We used the 2D slotted area model where the floor of the FPGA is assumed to be statically equipartitioned into a set of tiles in which any arbitrary task may be feasibly mapped. The experimental results reveal that the proposed scheduling strategies are able to achieve high resource utilization with low task rejection rates over various simulation scenarios.\",\"PeriodicalId\":100643,\"journal\":{\"name\":\"IEEE Transactions on Multi-Scale Computing Systems\",\"volume\":\"4 1\",\"pages\":\"41-54\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/TMSCS.2017.2691701\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Multi-Scale Computing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/7893696/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Multi-Scale Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/7893696/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

随着具有可接受的低开销的任务抢占/重定位在当今可重构FPGA中成为现实,它们作为执行性能关键任务集的平台,同时允许高资源利用率,开始显示出光明的前景。许多性能敏感的实时系统,包括汽车和航空电子系统、化学反应堆等中的系统,通常执行一组持续的周期性安全关键控制任务以及动态事件驱动的非周期性任务。这项工作提出了一个联合调度框架,用于在完全和运行时部分可重新配置的平台上联合执行这种周期性和非周期性实时任务。具体来说,我们提出了一种在存在一组持久周期性任务的情况下用于动态非周期性任务,以最小化非周期性的任务拒绝,从而实现高资源利用率的准入控制策略和抢占调度方法。我们使用了2D时隙区域模型,其中假设FPGA的底板被静态等分为一组瓦片,其中任何任意任务都可以在其中进行映射。实验结果表明,在各种仿真场景下,所提出的调度策略能够实现高资源利用率和低任务拒绝率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Co-Scheduling Persistent Periodic and Dynamic Aperiodic Real-Time Tasks on Reconfigurable Platforms
As task preemption/relocation with acceptably low overheads become a reality in today's reconfigurable FPGAs, they are starting to show bright prospects as platforms for executing performance critical task sets while allowing high resource utilization. Many performance sensitive real-time systems including those in automotive and avionics systems, chemical reactors, etc., often execute a set of persistent periodic safety critical control tasks along with dynamic event driven aperiodic tasks. This work presents a co-scheduling framework for the combined execution of such periodic and aperiodic real-time tasks on fully and run-time partially reconfigurable platforms. Specifically, we present an admission control strategy and preemptive scheduling methodology for dynamic aperiodic tasks in the presence of a set of persistent periodic tasks such that aperiodic task rejections may be minimized, thus resulting in high resource utilization. We used the 2D slotted area model where the floor of the FPGA is assumed to be statically equipartitioned into a set of tiles in which any arbitrary task may be feasibly mapped. The experimental results reveal that the proposed scheduling strategies are able to achieve high resource utilization with low task rejection rates over various simulation scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Monolithic 3D Hybrid Architecture for Energy-Efficient Computation H$^2$OEIN: A Hierarchical Hybrid Optical/Electrical Interconnection Network for Exascale Computing Systems A Novel, Simulator for Heterogeneous Cloud Systems that Incorporate Custom Hardware Accelerators Enforcing End-to-End I/O Policies for Scientific Workflows Using Software-Defined Storage Resource Enclaves Low Register-Complexity Systolic Digit-Serial Multiplier Over $GF(2^m)$ Based on Trinomials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1