{"title":"RF-PSSM:旋转森林算法和位置特异性评分矩阵的结合改进了丙型肝炎病毒与人之间蛋白质-蛋白质相互作用的预测","authors":"Xin Liu;Yaping Lu;Liang Wang;Wei Geng;Xinyi Shi;Xiao Zhang","doi":"10.26599/BDMA.2022.9020031","DOIUrl":null,"url":null,"abstract":"The identification of hepatitis C virus (HCV) virus-human protein interactions will not only help us understand the molecular mechanisms of related diseases but also be conductive to discovering new drug targets. An increasing number of clinically and experimentally validated interactions between HCV and human proteins have been documented in public databases, facilitating studies based on computational methods. In this study, we proposed a new computational approach, rotation forest position-specific scoring matrix (RF-PSSM), to predict the interactions among HCV and human proteins. In particular, PSSM was used to characterize each protein, two-dimensional principal component analysis (2DPCA) was then adopted for feature extraction of PSSM. Finally, rotation forest (RF) was used to implement classification. The results of various ablation experiments show that on independent datasets, the accuracy and area under curve (AUC) value of RF-PSSM can reach 93.74\n<sup>%</sup>\n and 94.29%, respectively, outperforming almost all cutting-edge research. In addition, we used RF-PSSM to predict 9 human proteins that may interact with HCV protein E1, which can provide theoretical guidance for future experimental studies.","PeriodicalId":52355,"journal":{"name":"Big Data Mining and Analytics","volume":"6 1","pages":"21-31"},"PeriodicalIF":7.7000,"publicationDate":"2022-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8254253/9962810/09962955.pdf","citationCount":"1","resultStr":"{\"title\":\"RF-PSSM: A Combination of Rotation Forest Algorithm and Position-Specific Scoring Matrix for Improved Prediction of Protein-Protein Interactions Between Hepatitis C Virus and Human\",\"authors\":\"Xin Liu;Yaping Lu;Liang Wang;Wei Geng;Xinyi Shi;Xiao Zhang\",\"doi\":\"10.26599/BDMA.2022.9020031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The identification of hepatitis C virus (HCV) virus-human protein interactions will not only help us understand the molecular mechanisms of related diseases but also be conductive to discovering new drug targets. An increasing number of clinically and experimentally validated interactions between HCV and human proteins have been documented in public databases, facilitating studies based on computational methods. In this study, we proposed a new computational approach, rotation forest position-specific scoring matrix (RF-PSSM), to predict the interactions among HCV and human proteins. In particular, PSSM was used to characterize each protein, two-dimensional principal component analysis (2DPCA) was then adopted for feature extraction of PSSM. Finally, rotation forest (RF) was used to implement classification. The results of various ablation experiments show that on independent datasets, the accuracy and area under curve (AUC) value of RF-PSSM can reach 93.74\\n<sup>%</sup>\\n and 94.29%, respectively, outperforming almost all cutting-edge research. In addition, we used RF-PSSM to predict 9 human proteins that may interact with HCV protein E1, which can provide theoretical guidance for future experimental studies.\",\"PeriodicalId\":52355,\"journal\":{\"name\":\"Big Data Mining and Analytics\",\"volume\":\"6 1\",\"pages\":\"21-31\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2022-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/8254253/9962810/09962955.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Big Data Mining and Analytics\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9962955/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data Mining and Analytics","FirstCategoryId":"1093","ListUrlMain":"https://ieeexplore.ieee.org/document/9962955/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
RF-PSSM: A Combination of Rotation Forest Algorithm and Position-Specific Scoring Matrix for Improved Prediction of Protein-Protein Interactions Between Hepatitis C Virus and Human
The identification of hepatitis C virus (HCV) virus-human protein interactions will not only help us understand the molecular mechanisms of related diseases but also be conductive to discovering new drug targets. An increasing number of clinically and experimentally validated interactions between HCV and human proteins have been documented in public databases, facilitating studies based on computational methods. In this study, we proposed a new computational approach, rotation forest position-specific scoring matrix (RF-PSSM), to predict the interactions among HCV and human proteins. In particular, PSSM was used to characterize each protein, two-dimensional principal component analysis (2DPCA) was then adopted for feature extraction of PSSM. Finally, rotation forest (RF) was used to implement classification. The results of various ablation experiments show that on independent datasets, the accuracy and area under curve (AUC) value of RF-PSSM can reach 93.74
%
and 94.29%, respectively, outperforming almost all cutting-edge research. In addition, we used RF-PSSM to predict 9 human proteins that may interact with HCV protein E1, which can provide theoretical guidance for future experimental studies.
期刊介绍:
Big Data Mining and Analytics, a publication by Tsinghua University Press, presents groundbreaking research in the field of big data research and its applications. This comprehensive book delves into the exploration and analysis of vast amounts of data from diverse sources to uncover hidden patterns, correlations, insights, and knowledge.
Featuring the latest developments, research issues, and solutions, this book offers valuable insights into the world of big data. It provides a deep understanding of data mining techniques, data analytics, and their practical applications.
Big Data Mining and Analytics has gained significant recognition and is indexed and abstracted in esteemed platforms such as ESCI, EI, Scopus, DBLP Computer Science, Google Scholar, INSPEC, CSCD, DOAJ, CNKI, and more.
With its wealth of information and its ability to transform the way we perceive and utilize data, this book is a must-read for researchers, professionals, and anyone interested in the field of big data analytics.