基于深度神经网络的超短波通信静噪算法

IF 7.7 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Big Data Mining and Analytics Pub Date : 2022-11-24 DOI:10.26599/BDMA.2022.9020025
Yuanxin Xiang;Yi Lv;Wenqiang Lei;Jiancheng Lv
{"title":"基于深度神经网络的超短波通信静噪算法","authors":"Yuanxin Xiang;Yi Lv;Wenqiang Lei;Jiancheng Lv","doi":"10.26599/BDMA.2022.9020025","DOIUrl":null,"url":null,"abstract":"The squelch problem of ultra-short wave communication under non-stationary noise and low Signal-to-Noise Ratio (SNR) in a complex electromagnetic environment is still challenging. To alleviate the problem, we proposed a squelch algorithm for ultra-short wave communication based on a deep neural network and the traditional energy decision method. The proposed algorithm first predicts the speech existence probability using a three-layer Gated Recurrent Unit (GRU) with the speech banding spectrum as the feature. Then it gets the final squelch result by combining the strength of the signal energy and the speech existence probability. Multiple simulations and experiments are done to verify the robustness and effectiveness of the proposed algorithm. We simulate the algorithm in three situations: the typical Amplitude Modulation (AM) and Frequency Modulation (FM) in the ultra-short wave communication under different SNR environments, the non-stationary burst-like noise environments, and the real received signal of the ultra-short wave radio. The experimental results show that the proposed algorithm performs better than the traditional squelch methods in all the simulations and experiments. In particular, the false alarm rate of the proposed squelch algorithm for non-stationary burst-like noise is significantly lower than that of traditional squelch methods.","PeriodicalId":52355,"journal":{"name":"Big Data Mining and Analytics","volume":"6 1","pages":"106-114"},"PeriodicalIF":7.7000,"publicationDate":"2022-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8254253/9962810/09962958.pdf","citationCount":"2","resultStr":"{\"title\":\"Ultra-Short Wave Communication Squelch Algorithm Based on Deep Neural Network\",\"authors\":\"Yuanxin Xiang;Yi Lv;Wenqiang Lei;Jiancheng Lv\",\"doi\":\"10.26599/BDMA.2022.9020025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The squelch problem of ultra-short wave communication under non-stationary noise and low Signal-to-Noise Ratio (SNR) in a complex electromagnetic environment is still challenging. To alleviate the problem, we proposed a squelch algorithm for ultra-short wave communication based on a deep neural network and the traditional energy decision method. The proposed algorithm first predicts the speech existence probability using a three-layer Gated Recurrent Unit (GRU) with the speech banding spectrum as the feature. Then it gets the final squelch result by combining the strength of the signal energy and the speech existence probability. Multiple simulations and experiments are done to verify the robustness and effectiveness of the proposed algorithm. We simulate the algorithm in three situations: the typical Amplitude Modulation (AM) and Frequency Modulation (FM) in the ultra-short wave communication under different SNR environments, the non-stationary burst-like noise environments, and the real received signal of the ultra-short wave radio. The experimental results show that the proposed algorithm performs better than the traditional squelch methods in all the simulations and experiments. In particular, the false alarm rate of the proposed squelch algorithm for non-stationary burst-like noise is significantly lower than that of traditional squelch methods.\",\"PeriodicalId\":52355,\"journal\":{\"name\":\"Big Data Mining and Analytics\",\"volume\":\"6 1\",\"pages\":\"106-114\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2022-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/8254253/9962810/09962958.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Big Data Mining and Analytics\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9962958/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data Mining and Analytics","FirstCategoryId":"1093","ListUrlMain":"https://ieeexplore.ieee.org/document/9962958/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 2

摘要

在复杂的电磁环境中,超短波通信在非平稳噪声和低信噪比下的静噪问题仍然具有挑战性。为了缓解这一问题,我们提出了一种基于深度神经网络和传统能量决策方法的超短波通信静噪算法。该算法首先使用三层门控递归单元(GRU)以语音带谱为特征来预测语音存在概率。然后将信号能量的强度与语音存在概率相结合,得到最终的静噪结果。通过多次仿真和实验验证了该算法的鲁棒性和有效性。我们在三种情况下模拟了该算法:不同信噪比环境下超短波通信中的典型调幅(AM)和调频(FM),非平稳突发噪声环境,以及超短波无线电的真实接收信号。实验结果表明,在所有的仿真和实验中,该算法都优于传统的静噪方法。特别是,所提出的非平稳类突发噪声静噪算法的虚警率显著低于传统静噪方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ultra-Short Wave Communication Squelch Algorithm Based on Deep Neural Network
The squelch problem of ultra-short wave communication under non-stationary noise and low Signal-to-Noise Ratio (SNR) in a complex electromagnetic environment is still challenging. To alleviate the problem, we proposed a squelch algorithm for ultra-short wave communication based on a deep neural network and the traditional energy decision method. The proposed algorithm first predicts the speech existence probability using a three-layer Gated Recurrent Unit (GRU) with the speech banding spectrum as the feature. Then it gets the final squelch result by combining the strength of the signal energy and the speech existence probability. Multiple simulations and experiments are done to verify the robustness and effectiveness of the proposed algorithm. We simulate the algorithm in three situations: the typical Amplitude Modulation (AM) and Frequency Modulation (FM) in the ultra-short wave communication under different SNR environments, the non-stationary burst-like noise environments, and the real received signal of the ultra-short wave radio. The experimental results show that the proposed algorithm performs better than the traditional squelch methods in all the simulations and experiments. In particular, the false alarm rate of the proposed squelch algorithm for non-stationary burst-like noise is significantly lower than that of traditional squelch methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Big Data Mining and Analytics
Big Data Mining and Analytics Computer Science-Computer Science Applications
CiteScore
20.90
自引率
2.20%
发文量
84
期刊介绍: Big Data Mining and Analytics, a publication by Tsinghua University Press, presents groundbreaking research in the field of big data research and its applications. This comprehensive book delves into the exploration and analysis of vast amounts of data from diverse sources to uncover hidden patterns, correlations, insights, and knowledge. Featuring the latest developments, research issues, and solutions, this book offers valuable insights into the world of big data. It provides a deep understanding of data mining techniques, data analytics, and their practical applications. Big Data Mining and Analytics has gained significant recognition and is indexed and abstracted in esteemed platforms such as ESCI, EI, Scopus, DBLP Computer Science, Google Scholar, INSPEC, CSCD, DOAJ, CNKI, and more. With its wealth of information and its ability to transform the way we perceive and utilize data, this book is a must-read for researchers, professionals, and anyone interested in the field of big data analytics.
期刊最新文献
Contents Front Cover Incremental Data Stream Classification with Adaptive Multi-Task Multi-View Learning Attention-Based CNN Fusion Model for Emotion Recognition During Walking Using Discrete Wavelet Transform on EEG and Inertial Signals Gender-Based Analysis of User Reactions to Facebook Posts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1