{"title":"检验由条件分位数限制确定的非参数工具变量的外生性","authors":"J. Fu, J. Horowitz, M. Parey","doi":"10.1920/WP.CEM.2015.6815","DOIUrl":null,"url":null,"abstract":"This paper presents a test for exogeneity of explanatory variables in a nonparametric instrumental variables (IV) model whose structural function is identified through a conditional quantile restriction. Quantile regression models are increasingly important in applied econometrics. As with mean-regression models, an erroneous assumption that the explanatory variables in a quantile regression model are exogenous can lead to highly misleading results. In addition, a test of exogeneity based on an incorrectly specified parametric model can produce misleading results. This paper presents a test of exogeneity that does not assume the structural function belongs to a known finite-dimensional parametric family and does not require nonparametric estimation of this function. The latter property is important because, owing to the ill-posed inverse problem, a test based on a nonparametric estimator of the structural function has low power. The test presented here is consistent whenever the structural function differs from the conditional quantile function on a set of non-zero probability. The test has non-trivial power uniformly over a large class of structural functions that differ from the conditional quantile function by O(n-1/2) . The results of Monte Carlo experiments illustrate the usefulness of the test.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2015-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Testing exogeneity in nonparametric instrumental variables identified by conditional quantile restrictions\",\"authors\":\"J. Fu, J. Horowitz, M. Parey\",\"doi\":\"10.1920/WP.CEM.2015.6815\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a test for exogeneity of explanatory variables in a nonparametric instrumental variables (IV) model whose structural function is identified through a conditional quantile restriction. Quantile regression models are increasingly important in applied econometrics. As with mean-regression models, an erroneous assumption that the explanatory variables in a quantile regression model are exogenous can lead to highly misleading results. In addition, a test of exogeneity based on an incorrectly specified parametric model can produce misleading results. This paper presents a test of exogeneity that does not assume the structural function belongs to a known finite-dimensional parametric family and does not require nonparametric estimation of this function. The latter property is important because, owing to the ill-posed inverse problem, a test based on a nonparametric estimator of the structural function has low power. The test presented here is consistent whenever the structural function differs from the conditional quantile function on a set of non-zero probability. The test has non-trivial power uniformly over a large class of structural functions that differ from the conditional quantile function by O(n-1/2) . The results of Monte Carlo experiments illustrate the usefulness of the test.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2015-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1920/WP.CEM.2015.6815\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1920/WP.CEM.2015.6815","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Testing exogeneity in nonparametric instrumental variables identified by conditional quantile restrictions
This paper presents a test for exogeneity of explanatory variables in a nonparametric instrumental variables (IV) model whose structural function is identified through a conditional quantile restriction. Quantile regression models are increasingly important in applied econometrics. As with mean-regression models, an erroneous assumption that the explanatory variables in a quantile regression model are exogenous can lead to highly misleading results. In addition, a test of exogeneity based on an incorrectly specified parametric model can produce misleading results. This paper presents a test of exogeneity that does not assume the structural function belongs to a known finite-dimensional parametric family and does not require nonparametric estimation of this function. The latter property is important because, owing to the ill-posed inverse problem, a test based on a nonparametric estimator of the structural function has low power. The test presented here is consistent whenever the structural function differs from the conditional quantile function on a set of non-zero probability. The test has non-trivial power uniformly over a large class of structural functions that differ from the conditional quantile function by O(n-1/2) . The results of Monte Carlo experiments illustrate the usefulness of the test.