中心极限定理与高维自举

IF 2.1 1区 数学 Q1 STATISTICS & PROBABILITY Annals of Probability Pub Date : 2014-12-11 DOI:10.1920/WP.CEM.2016.3916
V. Chernozhukov, D. Chetverikov, Kengo Kato
{"title":"中心极限定理与高维自举","authors":"V. Chernozhukov, D. Chetverikov, Kengo Kato","doi":"10.1920/WP.CEM.2016.3916","DOIUrl":null,"url":null,"abstract":"In this paper, we derive central limit and bootstrap theorems for probabilities that centered high-dimensional vector sums hit rectangles and sparsely convex sets. Specifically, we derive Gaussian and bootstrap approximations for the probabilities that a root-n rescaled sample average of Xi is in A, where X1,..., Xn are independent random vectors in Rp and A is a rectangle, or, more generally, a sparsely convex set, and show that the approximation error converges to zero even if p=pn-> infinity and p>>n; in particular, p can be as large as O(e^(Cn^c)) for some constants c,C>0. The result holds uniformly over all rectangles, or more generally, sparsely convex sets, and does not require any restrictions on the correlation among components of Xi. Sparsely convex sets are sets that can be represented as intersections of many convex sets whose indicator functions depend nontrivially only on a small subset of their arguments, with rectangles being a special case.","PeriodicalId":50763,"journal":{"name":"Annals of Probability","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2014-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"281","resultStr":"{\"title\":\"Central limit theorems and bootstrap in high dimensions\",\"authors\":\"V. Chernozhukov, D. Chetverikov, Kengo Kato\",\"doi\":\"10.1920/WP.CEM.2016.3916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we derive central limit and bootstrap theorems for probabilities that centered high-dimensional vector sums hit rectangles and sparsely convex sets. Specifically, we derive Gaussian and bootstrap approximations for the probabilities that a root-n rescaled sample average of Xi is in A, where X1,..., Xn are independent random vectors in Rp and A is a rectangle, or, more generally, a sparsely convex set, and show that the approximation error converges to zero even if p=pn-> infinity and p>>n; in particular, p can be as large as O(e^(Cn^c)) for some constants c,C>0. The result holds uniformly over all rectangles, or more generally, sparsely convex sets, and does not require any restrictions on the correlation among components of Xi. Sparsely convex sets are sets that can be represented as intersections of many convex sets whose indicator functions depend nontrivially only on a small subset of their arguments, with rectangles being a special case.\",\"PeriodicalId\":50763,\"journal\":{\"name\":\"Annals of Probability\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2014-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"281\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1920/WP.CEM.2016.3916\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1920/WP.CEM.2016.3916","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 281

摘要

在本文中,我们导出了中心高维向量和碰到矩形和稀疏凸集的概率的中心极限定理和自举定理。, Xn是Rp中的独立随机向量,A是一个矩形,或者更一般地说,是一个稀疏凸集,并且表明即使p=pn->∞和p>>n,近似误差收敛于零;特别地,p可以大到O(e^(Cn^c))对于某些常数c c >0。稀疏凸集是可以表示为许多凸集的交集的集合,这些凸集的指示函数仅非平凡地依赖于它们的参数的一个小子集,矩形是一种特殊情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Central limit theorems and bootstrap in high dimensions
In this paper, we derive central limit and bootstrap theorems for probabilities that centered high-dimensional vector sums hit rectangles and sparsely convex sets. Specifically, we derive Gaussian and bootstrap approximations for the probabilities that a root-n rescaled sample average of Xi is in A, where X1,..., Xn are independent random vectors in Rp and A is a rectangle, or, more generally, a sparsely convex set, and show that the approximation error converges to zero even if p=pn-> infinity and p>>n; in particular, p can be as large as O(e^(Cn^c)) for some constants c,C>0. The result holds uniformly over all rectangles, or more generally, sparsely convex sets, and does not require any restrictions on the correlation among components of Xi. Sparsely convex sets are sets that can be represented as intersections of many convex sets whose indicator functions depend nontrivially only on a small subset of their arguments, with rectangles being a special case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Probability
Annals of Probability 数学-统计学与概率论
CiteScore
4.60
自引率
8.70%
发文量
61
审稿时长
6-12 weeks
期刊介绍: The Annals of Probability publishes research papers in modern probability theory, its relations to other areas of mathematics, and its applications in the physical and biological sciences. Emphasis is on importance, interest, and originality – formal novelty and correctness are not sufficient for publication. The Annals will also publish authoritative review papers and surveys of areas in vigorous development.
期刊最新文献
Most transient random walks have infinitely many cut times Scaling limit of the heavy tailed ballistic deposition model with p-sticking Decay of convolved densities via Laplace transform On strong solutions of Itô’s equations with Dσ and b in Morrey classes containing Ld Global information from local observations of the noisy voter model on a graph
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1