注意感知异构图神经网络

IF 7.7 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Big Data Mining and Analytics Pub Date : 2021-08-26 DOI:10.26599/BDMA.2021.9020008
Jintao Zhang;Quan Xu
{"title":"注意感知异构图神经网络","authors":"Jintao Zhang;Quan Xu","doi":"10.26599/BDMA.2021.9020008","DOIUrl":null,"url":null,"abstract":"As a powerful tool for elucidating the embedding representation of graph-structured data, Graph Neural Networks (GNNs), which are a series of powerful tools built on homogeneous networks, have been widely used in various data mining tasks. It is a huge challenge to apply a GNN to an embedding Heterogeneous Information Network (HIN). The main reason for this challenge is that HINs contain many different types of nodes and different types of relationships between nodes. HIN contains rich semantic and structural information, which requires a specially designed graph neural network. However, the existing HIN-based graph neural network models rarely consider the interactive information hidden between the meta-paths of HIN in the poor embedding of nodes in the HIN. In this paper, we propose an Attention-aware Heterogeneous graph Neural Network (AHNN) model to effectively extract useful information from HIN and use it to learn the embedding representation of nodes. Specifically, we first use node-level attention to aggregate and update the embedding representation of nodes, and then concatenate the embedding representation of the nodes on different meta-paths. Finally, the semantic-level neural network is proposed to extract the feature interaction relationships on different meta-paths and learn the final embedding of nodes. Experimental results on three widely used datasets showed that the AHNN model could significantly outperform the state-of-the-art models.","PeriodicalId":52355,"journal":{"name":"Big Data Mining and Analytics","volume":"4 4","pages":"233-241"},"PeriodicalIF":7.7000,"publicationDate":"2021-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8254253/9523493/09523497.pdf","citationCount":"13","resultStr":"{\"title\":\"Attention-aware heterogeneous graph neural network\",\"authors\":\"Jintao Zhang;Quan Xu\",\"doi\":\"10.26599/BDMA.2021.9020008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a powerful tool for elucidating the embedding representation of graph-structured data, Graph Neural Networks (GNNs), which are a series of powerful tools built on homogeneous networks, have been widely used in various data mining tasks. It is a huge challenge to apply a GNN to an embedding Heterogeneous Information Network (HIN). The main reason for this challenge is that HINs contain many different types of nodes and different types of relationships between nodes. HIN contains rich semantic and structural information, which requires a specially designed graph neural network. However, the existing HIN-based graph neural network models rarely consider the interactive information hidden between the meta-paths of HIN in the poor embedding of nodes in the HIN. In this paper, we propose an Attention-aware Heterogeneous graph Neural Network (AHNN) model to effectively extract useful information from HIN and use it to learn the embedding representation of nodes. Specifically, we first use node-level attention to aggregate and update the embedding representation of nodes, and then concatenate the embedding representation of the nodes on different meta-paths. Finally, the semantic-level neural network is proposed to extract the feature interaction relationships on different meta-paths and learn the final embedding of nodes. Experimental results on three widely used datasets showed that the AHNN model could significantly outperform the state-of-the-art models.\",\"PeriodicalId\":52355,\"journal\":{\"name\":\"Big Data Mining and Analytics\",\"volume\":\"4 4\",\"pages\":\"233-241\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2021-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/8254253/9523493/09523497.pdf\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Big Data Mining and Analytics\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9523497/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data Mining and Analytics","FirstCategoryId":"1093","ListUrlMain":"https://ieeexplore.ieee.org/document/9523497/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 13

摘要

作为解释图结构数据嵌入表示的强大工具,图神经网络(GNNs)是建立在同构网络上的一系列强大工具,已被广泛应用于各种数据挖掘任务中。将GNN应用于嵌入式异构信息网络是一个巨大的挑战。这一挑战的主要原因是HIN包含许多不同类型的节点以及节点之间不同类型的关系。HIN包含丰富的语义和结构信息,这需要专门设计的图神经网络。然而,现有的基于HIN的图神经网络模型很少考虑隐藏在HIN元路径之间的交互信息,因为节点在HIN中的嵌入很差。在本文中,我们提出了一种注意感知异构图神经网络(AHNN)模型,以有效地从HIN中提取有用的信息,并使用它来学习节点的嵌入表示。具体来说,我们首先使用节点级别的注意力来聚合和更新节点的嵌入表示,然后将不同元路径上的节点嵌入表示连接起来。最后,提出了语义级神经网络来提取不同元路径上的特征交互关系,并学习节点的最终嵌入。在三个广泛使用的数据集上的实验结果表明,AHNN模型可以显著优于最先进的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Attention-aware heterogeneous graph neural network
As a powerful tool for elucidating the embedding representation of graph-structured data, Graph Neural Networks (GNNs), which are a series of powerful tools built on homogeneous networks, have been widely used in various data mining tasks. It is a huge challenge to apply a GNN to an embedding Heterogeneous Information Network (HIN). The main reason for this challenge is that HINs contain many different types of nodes and different types of relationships between nodes. HIN contains rich semantic and structural information, which requires a specially designed graph neural network. However, the existing HIN-based graph neural network models rarely consider the interactive information hidden between the meta-paths of HIN in the poor embedding of nodes in the HIN. In this paper, we propose an Attention-aware Heterogeneous graph Neural Network (AHNN) model to effectively extract useful information from HIN and use it to learn the embedding representation of nodes. Specifically, we first use node-level attention to aggregate and update the embedding representation of nodes, and then concatenate the embedding representation of the nodes on different meta-paths. Finally, the semantic-level neural network is proposed to extract the feature interaction relationships on different meta-paths and learn the final embedding of nodes. Experimental results on three widely used datasets showed that the AHNN model could significantly outperform the state-of-the-art models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Big Data Mining and Analytics
Big Data Mining and Analytics Computer Science-Computer Science Applications
CiteScore
20.90
自引率
2.20%
发文量
84
期刊介绍: Big Data Mining and Analytics, a publication by Tsinghua University Press, presents groundbreaking research in the field of big data research and its applications. This comprehensive book delves into the exploration and analysis of vast amounts of data from diverse sources to uncover hidden patterns, correlations, insights, and knowledge. Featuring the latest developments, research issues, and solutions, this book offers valuable insights into the world of big data. It provides a deep understanding of data mining techniques, data analytics, and their practical applications. Big Data Mining and Analytics has gained significant recognition and is indexed and abstracted in esteemed platforms such as ESCI, EI, Scopus, DBLP Computer Science, Google Scholar, INSPEC, CSCD, DOAJ, CNKI, and more. With its wealth of information and its ability to transform the way we perceive and utilize data, this book is a must-read for researchers, professionals, and anyone interested in the field of big data analytics.
期刊最新文献
Contents Front Cover Incremental Data Stream Classification with Adaptive Multi-Task Multi-View Learning Attention-Based CNN Fusion Model for Emotion Recognition During Walking Using Discrete Wavelet Transform on EEG and Inertial Signals Gender-Based Analysis of User Reactions to Facebook Posts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1