基于故障敏感性分析的模板攻击新方法

Qian Wang;An Wang;Gang Qu;Guoshuang Zhang
{"title":"基于故障敏感性分析的模板攻击新方法","authors":"Qian Wang;An Wang;Gang Qu;Guoshuang Zhang","doi":"10.1109/TMSCS.2016.2643638","DOIUrl":null,"url":null,"abstract":"Fault Sensitivity Analysis (FSA) is a side-channel attack that utilizes the sensitive delay of circuits to retrieve the key in cryptographic systems. In this paper, we propose the concept of right or wrong collision (RWC) rate and use it to build templates on two S-boxes, one is the target of the attack and the other is used as a reference. Compared to the traditional Hamming weight model which has eight different values, our template model is two-dimensional with 256 different values and has the potential to significantly reduce the number of plaintext required to reveal the key. Attack experiments show that our template attack can successfully break the masked AES algorithm with only one clock frequency. Furthermore, we propose two improved template attack methods that can reduce the complexity for building templates to 1/256 and 9/256 of the original method, respectively. The improved method with different frequencies also improves the efficiency of template matching by 86.3 percent. Finally and most importantly, our methods can be used to break masked AES where the S-boxes do not have to be implemented by parallel AND gates, a major limitation of the current Hamming weight models.","PeriodicalId":100643,"journal":{"name":"IEEE Transactions on Multi-Scale Computing Systems","volume":"3 2","pages":"113-123"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TMSCS.2016.2643638","citationCount":"13","resultStr":"{\"title\":\"New Methods of Template Attack Based on Fault Sensitivity Analysis\",\"authors\":\"Qian Wang;An Wang;Gang Qu;Guoshuang Zhang\",\"doi\":\"10.1109/TMSCS.2016.2643638\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fault Sensitivity Analysis (FSA) is a side-channel attack that utilizes the sensitive delay of circuits to retrieve the key in cryptographic systems. In this paper, we propose the concept of right or wrong collision (RWC) rate and use it to build templates on two S-boxes, one is the target of the attack and the other is used as a reference. Compared to the traditional Hamming weight model which has eight different values, our template model is two-dimensional with 256 different values and has the potential to significantly reduce the number of plaintext required to reveal the key. Attack experiments show that our template attack can successfully break the masked AES algorithm with only one clock frequency. Furthermore, we propose two improved template attack methods that can reduce the complexity for building templates to 1/256 and 9/256 of the original method, respectively. The improved method with different frequencies also improves the efficiency of template matching by 86.3 percent. Finally and most importantly, our methods can be used to break masked AES where the S-boxes do not have to be implemented by parallel AND gates, a major limitation of the current Hamming weight models.\",\"PeriodicalId\":100643,\"journal\":{\"name\":\"IEEE Transactions on Multi-Scale Computing Systems\",\"volume\":\"3 2\",\"pages\":\"113-123\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/TMSCS.2016.2643638\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Multi-Scale Computing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/7805342/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Multi-Scale Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/7805342/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

故障敏感度分析(FSA)是一种侧通道攻击,它利用电路的敏感延迟来检索密码系统中的密钥。在本文中,我们提出了对错碰撞(RWC)率的概念,并将其用于在两个S盒上构建模板,一个是攻击的目标,另一个作为参考。与具有八个不同值的传统汉明权重模型相比,我们的模板模型是二维的,具有256个不同值,并且有可能显著减少揭示密钥所需的明文数量。攻击实验表明,我们的模板攻击只需一个时钟频率就可以成功地打破屏蔽AES算法。此外,我们提出了两种改进的模板攻击方法,可以将构建模板的复杂度分别降低到原始方法的1/256和9/256。改进后的方法在不同频率下的模板匹配效率也提高了86.3%。最后也是最重要的一点,我们的方法可以用来打破屏蔽AES,其中S盒不必通过并行and门来实现,这是当前Hamming权重模型的主要限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
New Methods of Template Attack Based on Fault Sensitivity Analysis
Fault Sensitivity Analysis (FSA) is a side-channel attack that utilizes the sensitive delay of circuits to retrieve the key in cryptographic systems. In this paper, we propose the concept of right or wrong collision (RWC) rate and use it to build templates on two S-boxes, one is the target of the attack and the other is used as a reference. Compared to the traditional Hamming weight model which has eight different values, our template model is two-dimensional with 256 different values and has the potential to significantly reduce the number of plaintext required to reveal the key. Attack experiments show that our template attack can successfully break the masked AES algorithm with only one clock frequency. Furthermore, we propose two improved template attack methods that can reduce the complexity for building templates to 1/256 and 9/256 of the original method, respectively. The improved method with different frequencies also improves the efficiency of template matching by 86.3 percent. Finally and most importantly, our methods can be used to break masked AES where the S-boxes do not have to be implemented by parallel AND gates, a major limitation of the current Hamming weight models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Monolithic 3D Hybrid Architecture for Energy-Efficient Computation H$^2$OEIN: A Hierarchical Hybrid Optical/Electrical Interconnection Network for Exascale Computing Systems A Novel, Simulator for Heterogeneous Cloud Systems that Incorporate Custom Hardware Accelerators Enforcing End-to-End I/O Policies for Scientific Workflows Using Software-Defined Storage Resource Enclaves Low Register-Complexity Systolic Digit-Serial Multiplier Over $GF(2^m)$ Based on Trinomials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1