{"title":"融合步态感知的多模式自适应身份识别算法","authors":"Changjie Wang;Zhihua Li;Benjamin Sarpong","doi":"10.26599/BDMA.2021.9020006","DOIUrl":null,"url":null,"abstract":"Identity-recognition technologies require assistive equipment, whereas they are poor in recognition accuracy and expensive. To overcome this deficiency, this paper proposes several gait feature identification algorithms. First, in combination with the collected gait information of individuals from triaxial accelerometers on smartphones, the collected information is preprocessed, and multimodal fusion is used with the existing standard datasets to yield a multimodal synthetic dataset; then, with the multimodal characteristics of the collected biological gait information, a Convolutional Neural Network based Gait Recognition (CNN-GR) model and the related scheme for the multimodal features are developed; at last, regarding the proposed CNN-GR model and scheme, a unimodal gait feature identity single-gait feature identification algorithm and a multimodal gait feature fusion identity multimodal gait information algorithm are proposed. Experimental results show that the proposed algorithms perform well in recognition accuracy, the confusion matrix, and the kappa statistic, and they have better recognition scores and robustness than the compared algorithms; thus, the proposed algorithm has prominent promise in practice.","PeriodicalId":52355,"journal":{"name":"Big Data Mining and Analytics","volume":"4 4","pages":"223-232"},"PeriodicalIF":7.7000,"publicationDate":"2021-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8254253/9523493/09523496.pdf","citationCount":"9","resultStr":"{\"title\":\"Multimodal adaptive identity-recognition algorithm fused with gait perception\",\"authors\":\"Changjie Wang;Zhihua Li;Benjamin Sarpong\",\"doi\":\"10.26599/BDMA.2021.9020006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Identity-recognition technologies require assistive equipment, whereas they are poor in recognition accuracy and expensive. To overcome this deficiency, this paper proposes several gait feature identification algorithms. First, in combination with the collected gait information of individuals from triaxial accelerometers on smartphones, the collected information is preprocessed, and multimodal fusion is used with the existing standard datasets to yield a multimodal synthetic dataset; then, with the multimodal characteristics of the collected biological gait information, a Convolutional Neural Network based Gait Recognition (CNN-GR) model and the related scheme for the multimodal features are developed; at last, regarding the proposed CNN-GR model and scheme, a unimodal gait feature identity single-gait feature identification algorithm and a multimodal gait feature fusion identity multimodal gait information algorithm are proposed. Experimental results show that the proposed algorithms perform well in recognition accuracy, the confusion matrix, and the kappa statistic, and they have better recognition scores and robustness than the compared algorithms; thus, the proposed algorithm has prominent promise in practice.\",\"PeriodicalId\":52355,\"journal\":{\"name\":\"Big Data Mining and Analytics\",\"volume\":\"4 4\",\"pages\":\"223-232\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2021-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/8254253/9523493/09523496.pdf\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Big Data Mining and Analytics\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9523496/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data Mining and Analytics","FirstCategoryId":"1093","ListUrlMain":"https://ieeexplore.ieee.org/document/9523496/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Multimodal adaptive identity-recognition algorithm fused with gait perception
Identity-recognition technologies require assistive equipment, whereas they are poor in recognition accuracy and expensive. To overcome this deficiency, this paper proposes several gait feature identification algorithms. First, in combination with the collected gait information of individuals from triaxial accelerometers on smartphones, the collected information is preprocessed, and multimodal fusion is used with the existing standard datasets to yield a multimodal synthetic dataset; then, with the multimodal characteristics of the collected biological gait information, a Convolutional Neural Network based Gait Recognition (CNN-GR) model and the related scheme for the multimodal features are developed; at last, regarding the proposed CNN-GR model and scheme, a unimodal gait feature identity single-gait feature identification algorithm and a multimodal gait feature fusion identity multimodal gait information algorithm are proposed. Experimental results show that the proposed algorithms perform well in recognition accuracy, the confusion matrix, and the kappa statistic, and they have better recognition scores and robustness than the compared algorithms; thus, the proposed algorithm has prominent promise in practice.
期刊介绍:
Big Data Mining and Analytics, a publication by Tsinghua University Press, presents groundbreaking research in the field of big data research and its applications. This comprehensive book delves into the exploration and analysis of vast amounts of data from diverse sources to uncover hidden patterns, correlations, insights, and knowledge.
Featuring the latest developments, research issues, and solutions, this book offers valuable insights into the world of big data. It provides a deep understanding of data mining techniques, data analytics, and their practical applications.
Big Data Mining and Analytics has gained significant recognition and is indexed and abstracted in esteemed platforms such as ESCI, EI, Scopus, DBLP Computer Science, Google Scholar, INSPEC, CSCD, DOAJ, CNKI, and more.
With its wealth of information and its ability to transform the way we perceive and utilize data, this book is a must-read for researchers, professionals, and anyone interested in the field of big data analytics.