具有粗糙表面的片上互连的分析建模和性能基准

Somesh Kumar;Rohit Sharma
{"title":"具有粗糙表面的片上互连的分析建模和性能基准","authors":"Somesh Kumar;Rohit Sharma","doi":"10.1109/TMSCS.2017.2696941","DOIUrl":null,"url":null,"abstract":"In planar on-chip copper interconnects, conductor losses due to surface roughness demands explicit consideration for accurate modeling of their performance metrics. This is quite pertinent for high-performance manycore processors/servers, where on-chip interconnects are increasingly emerging as one of the key performance bottlenecks. This paper presents a novel analytical model for parameter extraction in current and future on-chip interconnects. Our proposed model aids in analyzing the impact of spatial and vertical surface roughness on their electrical performance. Our analysis clearly depicts that as the technology nodes scale down; the effect of the surface roughness becomes dominant and cannot be ignored. Based on AFM images of fabricated ultra-thin copper sheets, we have extracted roughness parameters to define realistic surface profiles using the well-known Mandelbrot-Weierstrass (MW) fractal function. For our analysis, we have considered four current and future interconnect technology nodes (i.e., 45, 22, 13, 7 nm) and evaluated the impact of surface roughness on typical performance metrics, such as delay, energy, and bandwidth. Results obtained using our model are verified by comparing with industry standard field solver Ansys HFSS as well as available experimental data that exhibits accuracy within 9 percent. We present signal integrity analysis using the eye diagram at 1, 5, 10, and 18 Gbps bit rates to find the increase in frequency dependent losses due to surface roughness. Finally, simulating a standard three line on-chip interconnect structure, we also report the computational overhead incurred for different values of roughness and technology nodes.","PeriodicalId":100643,"journal":{"name":"IEEE Transactions on Multi-Scale Computing Systems","volume":"4 3","pages":"272-284"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TMSCS.2017.2696941","citationCount":"15","resultStr":"{\"title\":\"Analytical Modeling and Performance Benchmarking of On-Chip Interconnects with Rough Surfaces\",\"authors\":\"Somesh Kumar;Rohit Sharma\",\"doi\":\"10.1109/TMSCS.2017.2696941\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In planar on-chip copper interconnects, conductor losses due to surface roughness demands explicit consideration for accurate modeling of their performance metrics. This is quite pertinent for high-performance manycore processors/servers, where on-chip interconnects are increasingly emerging as one of the key performance bottlenecks. This paper presents a novel analytical model for parameter extraction in current and future on-chip interconnects. Our proposed model aids in analyzing the impact of spatial and vertical surface roughness on their electrical performance. Our analysis clearly depicts that as the technology nodes scale down; the effect of the surface roughness becomes dominant and cannot be ignored. Based on AFM images of fabricated ultra-thin copper sheets, we have extracted roughness parameters to define realistic surface profiles using the well-known Mandelbrot-Weierstrass (MW) fractal function. For our analysis, we have considered four current and future interconnect technology nodes (i.e., 45, 22, 13, 7 nm) and evaluated the impact of surface roughness on typical performance metrics, such as delay, energy, and bandwidth. Results obtained using our model are verified by comparing with industry standard field solver Ansys HFSS as well as available experimental data that exhibits accuracy within 9 percent. We present signal integrity analysis using the eye diagram at 1, 5, 10, and 18 Gbps bit rates to find the increase in frequency dependent losses due to surface roughness. Finally, simulating a standard three line on-chip interconnect structure, we also report the computational overhead incurred for different values of roughness and technology nodes.\",\"PeriodicalId\":100643,\"journal\":{\"name\":\"IEEE Transactions on Multi-Scale Computing Systems\",\"volume\":\"4 3\",\"pages\":\"272-284\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/TMSCS.2017.2696941\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Multi-Scale Computing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/7909039/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Multi-Scale Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/7909039/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

在平面片上铜互连中,由于表面粗糙度导致的导体损耗需要明确考虑,以便对其性能指标进行精确建模。这与高性能多核处理器/服务器非常相关,片上互连正日益成为关键的性能瓶颈之一。本文提出了一种新的分析模型,用于当前和未来片上互连的参数提取。我们提出的模型有助于分析空间和垂直表面粗糙度对其电气性能的影响。我们的分析清楚地表明,随着技术节点的缩小;表面粗糙度的影响变得占主导地位,并且不能被忽视。基于制造的超薄铜片的AFM图像,我们提取了粗糙度参数,使用著名的Mandelbrot-Weierstrass(MW)分形函数来定义真实的表面轮廓。在我们的分析中,我们考虑了四个当前和未来的互连技术节点(即45、22、13、7 nm),并评估了表面粗糙度对典型性能指标(如延迟、能量和带宽)的影响。使用我们的模型获得的结果通过与行业标准现场求解器Ansys HFSS以及显示精度在9%以内的可用实验数据进行比较来验证。我们使用眼图在1、5、10和18Gbps比特率下进行信号完整性分析,以发现由于表面粗糙度导致的频率相关损耗的增加。最后,模拟一个标准的三线片上互连结构,我们还报告了不同粗糙度值和技术节点所产生的计算开销。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analytical Modeling and Performance Benchmarking of On-Chip Interconnects with Rough Surfaces
In planar on-chip copper interconnects, conductor losses due to surface roughness demands explicit consideration for accurate modeling of their performance metrics. This is quite pertinent for high-performance manycore processors/servers, where on-chip interconnects are increasingly emerging as one of the key performance bottlenecks. This paper presents a novel analytical model for parameter extraction in current and future on-chip interconnects. Our proposed model aids in analyzing the impact of spatial and vertical surface roughness on their electrical performance. Our analysis clearly depicts that as the technology nodes scale down; the effect of the surface roughness becomes dominant and cannot be ignored. Based on AFM images of fabricated ultra-thin copper sheets, we have extracted roughness parameters to define realistic surface profiles using the well-known Mandelbrot-Weierstrass (MW) fractal function. For our analysis, we have considered four current and future interconnect technology nodes (i.e., 45, 22, 13, 7 nm) and evaluated the impact of surface roughness on typical performance metrics, such as delay, energy, and bandwidth. Results obtained using our model are verified by comparing with industry standard field solver Ansys HFSS as well as available experimental data that exhibits accuracy within 9 percent. We present signal integrity analysis using the eye diagram at 1, 5, 10, and 18 Gbps bit rates to find the increase in frequency dependent losses due to surface roughness. Finally, simulating a standard three line on-chip interconnect structure, we also report the computational overhead incurred for different values of roughness and technology nodes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Monolithic 3D Hybrid Architecture for Energy-Efficient Computation H$^2$OEIN: A Hierarchical Hybrid Optical/Electrical Interconnection Network for Exascale Computing Systems A Novel, Simulator for Heterogeneous Cloud Systems that Incorporate Custom Hardware Accelerators Enforcing End-to-End I/O Policies for Scientific Workflows Using Software-Defined Storage Resource Enclaves Low Register-Complexity Systolic Digit-Serial Multiplier Over $GF(2^m)$ Based on Trinomials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1