Mohammed A. Zidan;YeonJoo Jeong;Jong Hoon Shin;Chao Du;Zhengya Zhang;Wei D. Lu
{"title":"用于可重构计算的现场可编程横杆阵列(FPCA)","authors":"Mohammed A. Zidan;YeonJoo Jeong;Jong Hoon Shin;Chao Du;Zhengya Zhang;Wei D. Lu","doi":"10.1109/TMSCS.2017.2721160","DOIUrl":null,"url":null,"abstract":"For decades, advances in electronics were directly driven by the scaling of CMOS transistors according to Moore's law. However, both the CMOS scaling and the classical computer architecture are approaching fundamental and practical limits, and new computing architectures based on emerging devices, such as resistive random-access memory (RRAM) devices, are expected to sustain the exponential growth of computing capability. Here, we propose a novel memory-centric, reconfigurable, general purpose computing platform that is capable of handling the explosive amount of data in a fast and energy-efficient manner. The proposed computing architecture is based on a uniform, physical, resistive, memory-centric fabric that can be optimally reconfigured and utilized to perform different computing and data storage tasks in a massively parallel approach. The system can be tailored to achieve maximal energy efficiency based on the data flow by dynamically allocating the basic computing fabric for storage, arithmetic, and analog computing including neuromorphic computing tasks.","PeriodicalId":100643,"journal":{"name":"IEEE Transactions on Multi-Scale Computing Systems","volume":"4 4","pages":"698-710"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TMSCS.2017.2721160","citationCount":"34","resultStr":"{\"title\":\"Field-Programmable Crossbar Array (FPCA) for Reconfigurable Computing\",\"authors\":\"Mohammed A. Zidan;YeonJoo Jeong;Jong Hoon Shin;Chao Du;Zhengya Zhang;Wei D. Lu\",\"doi\":\"10.1109/TMSCS.2017.2721160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For decades, advances in electronics were directly driven by the scaling of CMOS transistors according to Moore's law. However, both the CMOS scaling and the classical computer architecture are approaching fundamental and practical limits, and new computing architectures based on emerging devices, such as resistive random-access memory (RRAM) devices, are expected to sustain the exponential growth of computing capability. Here, we propose a novel memory-centric, reconfigurable, general purpose computing platform that is capable of handling the explosive amount of data in a fast and energy-efficient manner. The proposed computing architecture is based on a uniform, physical, resistive, memory-centric fabric that can be optimally reconfigured and utilized to perform different computing and data storage tasks in a massively parallel approach. The system can be tailored to achieve maximal energy efficiency based on the data flow by dynamically allocating the basic computing fabric for storage, arithmetic, and analog computing including neuromorphic computing tasks.\",\"PeriodicalId\":100643,\"journal\":{\"name\":\"IEEE Transactions on Multi-Scale Computing Systems\",\"volume\":\"4 4\",\"pages\":\"698-710\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/TMSCS.2017.2721160\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Multi-Scale Computing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/7961178/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Multi-Scale Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/7961178/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Field-Programmable Crossbar Array (FPCA) for Reconfigurable Computing
For decades, advances in electronics were directly driven by the scaling of CMOS transistors according to Moore's law. However, both the CMOS scaling and the classical computer architecture are approaching fundamental and practical limits, and new computing architectures based on emerging devices, such as resistive random-access memory (RRAM) devices, are expected to sustain the exponential growth of computing capability. Here, we propose a novel memory-centric, reconfigurable, general purpose computing platform that is capable of handling the explosive amount of data in a fast and energy-efficient manner. The proposed computing architecture is based on a uniform, physical, resistive, memory-centric fabric that can be optimally reconfigured and utilized to perform different computing and data storage tasks in a massively parallel approach. The system can be tailored to achieve maximal energy efficiency based on the data flow by dynamically allocating the basic computing fabric for storage, arithmetic, and analog computing including neuromorphic computing tasks.