使用软件定义的存储资源包为科学工作流强制执行端到端I/O策略

Suman Karki;Bao Nguyen;Joshua Feener;Kei Davis;Xuechen Zhang
{"title":"使用软件定义的存储资源包为科学工作流强制执行端到端I/O策略","authors":"Suman Karki;Bao Nguyen;Joshua Feener;Kei Davis;Xuechen Zhang","doi":"10.1109/TMSCS.2018.2879096","DOIUrl":null,"url":null,"abstract":"Data-intensive knowledge discovery requires scientific applications to run concurrently with analytics and visualization codes executing in situ for timely output inspection and knowledge extraction. Consequently, I/O pipelines of scientific workflows can be long and complex because they comprise many stages of analytics across different layers of the I/O stack of high-performance computing systems. Performance limitations at any I/O layer or stage can cause an I/O bottleneck resulting in greater than expected end-to-end I/O latency. In this paper, we present the design and implementation of a novel data management infrastructure called \n<italic>Software-Defined Storage Resource Enclaves</i>\n (SIREN) at system level to enforce end-to-end policies that dictate an I/O pipeline's performance. SIREN provides an I/O performance interface for users to specify the desired storage resources in the context of in-situ analytics. If suboptimal performance of analytics is caused by an I/O bottleneck when data are transferred between simulations and analytics, schedulers in different layers of the I/O stack automatically provide the guaranteed lower bounds on I/O throughput. Our experimental results demonstrate that SIREN provides performance isolation among scientific workflows sharing multiple storage servers across two I/O layers (burst buffer and parallel file systems) while maintaining high system scalability and resource utilization.","PeriodicalId":100643,"journal":{"name":"IEEE Transactions on Multi-Scale Computing Systems","volume":"4 4","pages":"662-675"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TMSCS.2018.2879096","citationCount":"2","resultStr":"{\"title\":\"Enforcing End-to-End I/O Policies for Scientific Workflows Using Software-Defined Storage Resource Enclaves\",\"authors\":\"Suman Karki;Bao Nguyen;Joshua Feener;Kei Davis;Xuechen Zhang\",\"doi\":\"10.1109/TMSCS.2018.2879096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data-intensive knowledge discovery requires scientific applications to run concurrently with analytics and visualization codes executing in situ for timely output inspection and knowledge extraction. Consequently, I/O pipelines of scientific workflows can be long and complex because they comprise many stages of analytics across different layers of the I/O stack of high-performance computing systems. Performance limitations at any I/O layer or stage can cause an I/O bottleneck resulting in greater than expected end-to-end I/O latency. In this paper, we present the design and implementation of a novel data management infrastructure called \\n<italic>Software-Defined Storage Resource Enclaves</i>\\n (SIREN) at system level to enforce end-to-end policies that dictate an I/O pipeline's performance. SIREN provides an I/O performance interface for users to specify the desired storage resources in the context of in-situ analytics. If suboptimal performance of analytics is caused by an I/O bottleneck when data are transferred between simulations and analytics, schedulers in different layers of the I/O stack automatically provide the guaranteed lower bounds on I/O throughput. Our experimental results demonstrate that SIREN provides performance isolation among scientific workflows sharing multiple storage servers across two I/O layers (burst buffer and parallel file systems) while maintaining high system scalability and resource utilization.\",\"PeriodicalId\":100643,\"journal\":{\"name\":\"IEEE Transactions on Multi-Scale Computing Systems\",\"volume\":\"4 4\",\"pages\":\"662-675\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/TMSCS.2018.2879096\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Multi-Scale Computing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/8519311/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Multi-Scale Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/8519311/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

数据密集型知识发现要求科学应用程序与现场执行的分析和可视化代码同时运行,以便及时进行输出检查和知识提取。因此,科学工作流程的I/O管道可能是漫长而复杂的,因为它们包括高性能计算系统I/O堆栈不同层的许多分析阶段。任何I/O层或阶段的性能限制都可能导致I/O瓶颈,从而导致端到端I/O延迟超过预期。在本文中,我们介绍了一种新的数据管理基础设施的设计和实现,该基础设施称为系统级的软件定义存储资源包(SIREN),用于强制执行决定I/O管道性能的端到端策略。SIREN为用户提供了一个I/O性能接口,以便在原位分析的环境中指定所需的存储资源。如果分析的次优性能是由模拟和分析之间传输数据时的I/O瓶颈引起的,则I/O堆栈不同层中的调度器会自动提供I/O吞吐量的保证下限。我们的实验结果表明,SIREN在跨两个I/O层(突发缓冲区和并行文件系统)共享多个存储服务器的科学工作流程之间提供了性能隔离,同时保持了较高的系统可扩展性和资源利用率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enforcing End-to-End I/O Policies for Scientific Workflows Using Software-Defined Storage Resource Enclaves
Data-intensive knowledge discovery requires scientific applications to run concurrently with analytics and visualization codes executing in situ for timely output inspection and knowledge extraction. Consequently, I/O pipelines of scientific workflows can be long and complex because they comprise many stages of analytics across different layers of the I/O stack of high-performance computing systems. Performance limitations at any I/O layer or stage can cause an I/O bottleneck resulting in greater than expected end-to-end I/O latency. In this paper, we present the design and implementation of a novel data management infrastructure called Software-Defined Storage Resource Enclaves (SIREN) at system level to enforce end-to-end policies that dictate an I/O pipeline's performance. SIREN provides an I/O performance interface for users to specify the desired storage resources in the context of in-situ analytics. If suboptimal performance of analytics is caused by an I/O bottleneck when data are transferred between simulations and analytics, schedulers in different layers of the I/O stack automatically provide the guaranteed lower bounds on I/O throughput. Our experimental results demonstrate that SIREN provides performance isolation among scientific workflows sharing multiple storage servers across two I/O layers (burst buffer and parallel file systems) while maintaining high system scalability and resource utilization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Monolithic 3D Hybrid Architecture for Energy-Efficient Computation H$^2$OEIN: A Hierarchical Hybrid Optical/Electrical Interconnection Network for Exascale Computing Systems A Novel, Simulator for Heterogeneous Cloud Systems that Incorporate Custom Hardware Accelerators Enforcing End-to-End I/O Policies for Scientific Workflows Using Software-Defined Storage Resource Enclaves Low Register-Complexity Systolic Digit-Serial Multiplier Over $GF(2^m)$ Based on Trinomials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1