{"title":"基于液滴等分运算和预测分析的MEDA生物芯片自适应前滚误差恢复","authors":"Zhanwei Zhong;Zipeng Li;Krishnendu Chakrabarty","doi":"10.1109/TMSCS.2018.2827030","DOIUrl":null,"url":null,"abstract":"Digital microfluidic biochips (DMFBs) are being increasingly used in biochemistry labs for automating bioassays. However, traditional DMFBs suffer from some key shortcomings: 1) inability to vary droplet volume in a flexible manner; 2) difficulty of integrating on-chip sensors; and 3) the need for special fabrication processes. To overcome these problems, DMFBs based on micro-electrode-dot -array (MEDA) have recently been proposed. However, errors are likely to occur on a MEDA DMFB due to chip defects and the unpredictability inherent to biochemical experiments. We present fine-grained error-recovery solutions for MEDA by exploiting real-time sensing and advanced MEDA-specific droplet operations. The proposed methods rely on adaptive droplet-aliquot operations and predictive analysis of mixing. In addition, a roll-forward error-recovery method is proposed to efficiently utilize the unused part of the biochip and reduce the time required for error recovery. Experimental results on three representative benchmarks demonstrate the efficiency of the proposed error-recovery strategy.","PeriodicalId":100643,"journal":{"name":"IEEE Transactions on Multi-Scale Computing Systems","volume":"4 4","pages":"577-592"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TMSCS.2018.2827030","citationCount":"21","resultStr":"{\"title\":\"Adaptive and Roll-Forward Error Recovery in MEDA Biochips Based on Droplet-Aliquot Operations and Predictive Analysis\",\"authors\":\"Zhanwei Zhong;Zipeng Li;Krishnendu Chakrabarty\",\"doi\":\"10.1109/TMSCS.2018.2827030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Digital microfluidic biochips (DMFBs) are being increasingly used in biochemistry labs for automating bioassays. However, traditional DMFBs suffer from some key shortcomings: 1) inability to vary droplet volume in a flexible manner; 2) difficulty of integrating on-chip sensors; and 3) the need for special fabrication processes. To overcome these problems, DMFBs based on micro-electrode-dot -array (MEDA) have recently been proposed. However, errors are likely to occur on a MEDA DMFB due to chip defects and the unpredictability inherent to biochemical experiments. We present fine-grained error-recovery solutions for MEDA by exploiting real-time sensing and advanced MEDA-specific droplet operations. The proposed methods rely on adaptive droplet-aliquot operations and predictive analysis of mixing. In addition, a roll-forward error-recovery method is proposed to efficiently utilize the unused part of the biochip and reduce the time required for error recovery. Experimental results on three representative benchmarks demonstrate the efficiency of the proposed error-recovery strategy.\",\"PeriodicalId\":100643,\"journal\":{\"name\":\"IEEE Transactions on Multi-Scale Computing Systems\",\"volume\":\"4 4\",\"pages\":\"577-592\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/TMSCS.2018.2827030\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Multi-Scale Computing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/8339520/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Multi-Scale Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/8339520/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adaptive and Roll-Forward Error Recovery in MEDA Biochips Based on Droplet-Aliquot Operations and Predictive Analysis
Digital microfluidic biochips (DMFBs) are being increasingly used in biochemistry labs for automating bioassays. However, traditional DMFBs suffer from some key shortcomings: 1) inability to vary droplet volume in a flexible manner; 2) difficulty of integrating on-chip sensors; and 3) the need for special fabrication processes. To overcome these problems, DMFBs based on micro-electrode-dot -array (MEDA) have recently been proposed. However, errors are likely to occur on a MEDA DMFB due to chip defects and the unpredictability inherent to biochemical experiments. We present fine-grained error-recovery solutions for MEDA by exploiting real-time sensing and advanced MEDA-specific droplet operations. The proposed methods rely on adaptive droplet-aliquot operations and predictive analysis of mixing. In addition, a roll-forward error-recovery method is proposed to efficiently utilize the unused part of the biochip and reduce the time required for error recovery. Experimental results on three representative benchmarks demonstrate the efficiency of the proposed error-recovery strategy.