电动汽车自适应故障诊断:一种人工智能混合信号处理方法

IF 2.1 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Canadian Journal of Electrical and Computer Engineering Pub Date : 2023-06-19 DOI:10.1109/ICJECE.2023.3264852
Lingli Gong;Anshuman Sharma;Mohammad Abdul Bhuiya;Hilmy Awad;Mohamed Z. Youssef
{"title":"电动汽车自适应故障诊断:一种人工智能混合信号处理方法","authors":"Lingli Gong;Anshuman Sharma;Mohammad Abdul Bhuiya;Hilmy Awad;Mohamed Z. Youssef","doi":"10.1109/ICJECE.2023.3264852","DOIUrl":null,"url":null,"abstract":"This article demonstrates an innovative design of a sensorless technique to diagnose, monitor, and broadcast faults in an electric vehicle’s (EV) propulsion operating conditions. By utilizing the artificial intelligence with a signal processing mixed clustering technique, an onboard health monitoring system (HMS) has been presented. The clustering technique uses a data-mining approach to prevent future failures for predictive maintenance planning, which is novel. For example, the propulsion inverter is equipped with a diagnostic system that uses the proposed algorithm to compare the reference gate-driving signal with the actual output voltage of the voltage source inverter (VSI). This article presents different failure scenarios of the inverter and demonstrates the capability to be applied to other components, such as brakes and motors. To validate the proposed technique, the necessary algorithm calculations, simulation, and laboratory prototype results are provided. The proposed work is proven accurate with fast response in healthy and faulty conditions.","PeriodicalId":100619,"journal":{"name":"IEEE Canadian Journal of Electrical and Computer Engineering","volume":"46 3","pages":"196-206"},"PeriodicalIF":2.1000,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Adaptive Fault Diagnosis of Electric Vehicles: An Artificial Intelligence Blended Signal Processing Methodology\",\"authors\":\"Lingli Gong;Anshuman Sharma;Mohammad Abdul Bhuiya;Hilmy Awad;Mohamed Z. Youssef\",\"doi\":\"10.1109/ICJECE.2023.3264852\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article demonstrates an innovative design of a sensorless technique to diagnose, monitor, and broadcast faults in an electric vehicle’s (EV) propulsion operating conditions. By utilizing the artificial intelligence with a signal processing mixed clustering technique, an onboard health monitoring system (HMS) has been presented. The clustering technique uses a data-mining approach to prevent future failures for predictive maintenance planning, which is novel. For example, the propulsion inverter is equipped with a diagnostic system that uses the proposed algorithm to compare the reference gate-driving signal with the actual output voltage of the voltage source inverter (VSI). This article presents different failure scenarios of the inverter and demonstrates the capability to be applied to other components, such as brakes and motors. To validate the proposed technique, the necessary algorithm calculations, simulation, and laboratory prototype results are provided. The proposed work is proven accurate with fast response in healthy and faulty conditions.\",\"PeriodicalId\":100619,\"journal\":{\"name\":\"IEEE Canadian Journal of Electrical and Computer Engineering\",\"volume\":\"46 3\",\"pages\":\"196-206\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Canadian Journal of Electrical and Computer Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10155401/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Canadian Journal of Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10155401/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

本文展示了一种无传感器技术的创新设计,用于诊断、监测和广播电动汽车(EV)推进运行条件下的故障。利用人工智能和信号处理混合聚类技术,提出了一种机载健康监测系统。聚类技术使用数据挖掘方法来预防预测性维护计划的未来故障,这是一种新颖的方法。例如,推进逆变器配备有诊断系统,该诊断系统使用所提出的算法将参考栅极驱动信号与电压源逆变器(VSI)的实际输出电压进行比较。本文介绍了逆变器的不同故障场景,并展示了应用于其他部件(如制动器和电机)的能力。为了验证所提出的技术,提供了必要的算法计算、仿真和实验室原型结果。所提出的工作被证明是准确的,在健康和故障条件下反应迅速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Adaptive Fault Diagnosis of Electric Vehicles: An Artificial Intelligence Blended Signal Processing Methodology
This article demonstrates an innovative design of a sensorless technique to diagnose, monitor, and broadcast faults in an electric vehicle’s (EV) propulsion operating conditions. By utilizing the artificial intelligence with a signal processing mixed clustering technique, an onboard health monitoring system (HMS) has been presented. The clustering technique uses a data-mining approach to prevent future failures for predictive maintenance planning, which is novel. For example, the propulsion inverter is equipped with a diagnostic system that uses the proposed algorithm to compare the reference gate-driving signal with the actual output voltage of the voltage source inverter (VSI). This article presents different failure scenarios of the inverter and demonstrates the capability to be applied to other components, such as brakes and motors. To validate the proposed technique, the necessary algorithm calculations, simulation, and laboratory prototype results are provided. The proposed work is proven accurate with fast response in healthy and faulty conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
0.00%
发文量
0
期刊最新文献
Table of Contents Front Cover IEEE Canadian Journal of Electrical and Computer Engineering Green Electricity Share Enhancement Through Rooftop Solar PV System on Institutional Sheds Enhanced Validation of Intelligent Control Algorithms in AC Microgrids
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1